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McCulloch-Pitts neuron (1943)

Warren McCulloch (neuroscientist)
Walter Pitts (logician)

Dendrites

y€{0,1}

g: aggregates information
f: takes a decision

Images from
https://towardsdatascience.com/mcculloch-pitts-model-5fdf65ac5dd1



McCulloch-Pitts neuron (1943)

I

g(x1, 29,23, ...,2,) = g(X) = E €

1=1

y=flgx)=1 if g(x)=>10
0 if glx)<¥b

y€{0,1}

. / g: aggregates information
f: takes a decision

Images from
https://towardsdatascience.com/mcculloch-pitts-model-5fdf65ac5dd1



McCulloch-Pitts neuron (1943)

AND function
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McCulloch-Pitts neuron (1943)

OR function

gy, xo, T3 ry) = g(x) =
] 1 f (_.(j[[X) ) = | [f.
P =0 f

Images from
https://towardsdatascience.com/mcculloch-pitts-model-5fdf65ac5dd1
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McCulloch-Pitts neuron (1943)

Inhibitory inputs:
it presentl OUtpLIt IS ZEro glay, o, X3, .., 2y) = g(X) = Z X
t=1
NOT example
y=[flgx)=1 if g(x)=0
=0 if g(x) <0
=0 if x.>0

Images from
https://towardsdatascience.com/mcculloch-pitts-model-5fdf65ac5dd1



McCulloch-Pitts neuron (1943)

Inhibitory inputs:
it presentl OUtpLIt IS ZEro glay, o, X3, .., 2y) = g(X) = Z X
=1
Other combinations
y=flgx))=1 1if g(x)=>0
=0 if glx) <0
=0 if x,>0

: | t—* yed0, 1}
U9 \\\ d

Images from
https://towardsdatascience.com/mcculloch-pitts-model-5fdf65ac5dd1



McCulloch-Pitts neuron (1943)

Geometric interpretation
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McCulloch-Pitts neuron (1943)

Geometric interpretation
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McCulloch-Pitts neuron (1943)

Geometric interpretation

T Top
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Images from
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McCulloch-Pitts neuron (1943)

Geometric interpretation

OR function
3

T1+ Ty + T3 = r; > 1
i=1

Images from
https://towardsdatascience.com/mcculloch-pitts-model-5fdf65ac5dd1



Frank Rosenblatt Perceptron (1956)

e Use data to learn the coefficients

_ 1 fTw.x+b>0
fgx) 0 otherwise
e Observations - training set D J : activation function
x € RY input T I ;
y € B output binary i ‘5
e Learnable parameters i |

N . ht By O tron - O k, CC BY-SA 3.0, https://
{W E R Welg S cgmrrr:)i%év;ﬁ(?med\i?ovrv;/:/v/’index.php?curiéj=88$382
beR Dbias



Frank Rosenblatt Perceptron (1956)

Optimization
e Initialize weights w to zero (or small random)

e For each sample j in the training set D = {x;,d}:
e Compute prediction

(1) = f(w(r) . X))
=JWo(D) Xjo + wi (@) X; 1+ wo(B) X5+ ...+ Wy () X 1)

e Update all weights 0 <i<N -1

wit+ 1) =w() +r1-(d;—y(1) x;;

r learning rate (usually small)



Frank Rosenblatt Perceptron (1956)

Limitations:

e The perceptron learning algorithm does not terminate if the
learning set is not linearly separable

e Needs a limit on the number of iterations!

e Example: exclusive OR (XOR)
e Algorithm fails completely! (no approx. solution)
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Which dataset do
you want to use?
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Frank Rosenblatt Perceptron (1956)

Limitations:
e Perceptron can’t choose "The best solution”

o Motivation for the linear SVM 2
“perceptron of optimal stability” if
(Krauth and Mezard, 1987)

By Qwertyus - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=41351528



Frank Rosenblatt Perceptron (1956)

e Controversy

The perceptron in ... “the embryo of an electronic computer that [the
Navy] expects will be able to walk, talk, see, write, reproduce itself and be
conscious of its existence.”

The New York Times, 1958

Olazaran, Mikel (1996). "A Sociological Study of the Official History of the Perceptrons Controversy".
Social Studies of Science. 26 (3): 611-659



Two layers can handle the “non linear separable set” limitation
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you want to use?
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Multi-Layer Perceptron

Z=W.X+ Db
a=f(w.x+Db)
= f(wy Xg+ Wy X+ Wy X5+ ... + Wy_; Xy_{ + D)



Multi-Layer Perceptron
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Multi-Layer Perceptron

Wg = (W(()),O’ W(()),l’ W(()),z)

zil = Wi.x+bil
al.l = f(wi X+ bl.l)

— £l l l l l
=J(Wio Xo+ W X+ W, X+ .o+ Wy Xy_y + D))



Multi-Layer Perceptron
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Multi-Layer Perceptron

' Multiple

Input layer Hidden layers oUtpULS



Activation functions

e Play a major role : , :

e Original perceptron: heavy side step-function .| i

* Many variants: By Omegation” Oun wor CO BYSA SO, tps:
e Linear
e Logistic
e tanh

e RelLU - rectified linear unit
e GelLU - Gaussian error linear unit



Activation functions

o Limitations of linear functions:
o A N-layer network can be written as a 2-layer network



| inear activations

Consider a network with a single hidden layer and two activation
functions ¢ and o:

yp(z) = o | D w)C | D wiw
7 7

If the activation functions are linear, then we can rewrite the
equations in the following vectorial notation:

y = (W) (WD)
S AN

!/
W «x

Linear activation functions result in linear models!
— The activation functions between layers should be non-linear.

Original Slide from Christian Wolf
https://perso.liris.cnrs.fr/christian.wolf/teaching/



Activation functions

Examples 0.75
Hyperbolic tangent

tanh(x) = - 2 =t

+ e—2X eX+ e ~0.75 1
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Activation functions

Limitations of “sigmoid” functions: tanh and logistic

... the hyperbolic tangent activation function typically performs better than the logistic sigmoid. - Page 195

... sigmoidal units saturate across most of their domain—they saturate to a high value when z
1S very positive, saturate to a low value when z is very negative, and are only strongly
sensitive to their input when z 1s near 0. - Page 195

Vanishing gradients make it difficult to know which direction the parameters should move to
improve the cost function - Page 290

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.



Activation functions

RelLU(x) = max(0,x)

e Motivation of RelLU
e Computational Simplicity
e Representation Sparsity - can output true zero values
o Linear Behavior

... [another| major algorithmic change that has greatly improved the performance of feedforward
networks was the replacement of sigmoid hidden units with piecewise linear hidden units, such as
rectified linear units. - Page 226

Computations are also cheaper: there is no need for computing the exponential function in activations. -
Page 226

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.



Universal approximation

A continuous function can be approximated with a
linear combination of translated/scaled ReLU functions



We can approximate any i) € €([a, b],R) with a linear combination of
translated /scaled RelLU functions.

Original Slides from Francois Fleuret
https://www.idiap.ch/~fleuret/

Francois Fleuret Deep learning / 3.4. Multi-Layer Perceptrons 7/ 10



We can approximate any ¢ € €(|a, b], R) with a linear combination of
translated/scaled RelLU functions.

f(x) = o(wix + by)

Original Slides from Francois Fleuret
https://www.idiap.ch/~fleuret/
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We can approximate any ¢ € €(|a, b], R) with a linear combination of
translated/scaled RelLU functions.

f(x) =o(wix + b1) + o(wax + by)

Original Slides from Francois Fleuret
https://www.idiap.ch/~fleuret/

Francois Fleuret Deep learning / 3.4. Multi-Layer Perceptrons 7 /10



We can approximate any ¢ € €(|a, b], R) with a linear combination of
translated/scaled RelLU functions.

f(x) = o(wix 4+ b1) + o(wax + by) 4+ o(wsx + b3)

Original Slides from Francois Fleuret
https://www.idiap.ch/~fleuret/

Francois Fleuret Deep learning / 3.4. Multi-Layer Perceptrons 7 /10



We can approximate any ¢ € €(|a, b], R) with a linear combination of
translated/scaled RelLU functions.

f(x) =o(wix+ b1) + o(wex + bp) + o(wsx + b3) + ...

Original Slides from Francois Fleuret
https://www.idiap.ch/~fleuret/

Francois Fleuret Deep learning / 3.4. Multi-Layer Perceptrons 7 /10
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f(x) =o(wix+ b1) + o(wex + bp) + o(wsx + b3) + ...
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https://www.idiap.ch/~fleuret/

Francois Fleuret Deep learning / 3.4. Multi-Layer Perceptrons 7 /10
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We can approximate any ¢ € €(|a, b], R) with a linear combination of
translated/scaled RelLU functions.

f(x) =o(wix+ b1) + o(wex + bp) + o(wsx + b3) + ...

AV N

This is true for other activation functions under mild assumptions.

Original Slides from Francois Fleuret
https://www.idiap.ch/~fleuret/

Francois Fleuret Deep learning / 3.4. Multi-Layer Perceptrons 7 /10



Activation functions

e Variant of RelLU:
e GelLU - Gaussian Error Linear Unit

Nonlinearities

2.51 — RelU

GELU
2.0 A

1.5 A

1.0 -

0.5 -

0.0 -

2 -1 0o 1 2
By Ringdongdang - Own work, CC BY-SA 4.0, https://
commons.wikimedia.org/w/index.php?curid=95947821

Hendrycks, Dan, and Kevin Gimpel. "Gaussian error linear units (gelus)."
arXiv preprint arXiv:1606.08415 (2016).



How to learn the weights?
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Frank Rosenblatt Perceptron (1956)

Optimization

e Update all weights 0 <i<N -1

l

r learning rate (usually small)



Frank Rosenblatt Perceptron (1956)

Optimization

e Update all weights 0 <i<N -1

l

r learning rate (usually small)

Update done for each observed sample - stochastic gradient descent



Gradient descent

First-order iterative optimization algorithm
to find a local minimum
of a differentiable function



Gradient descent

Fog in the mountain analogy

By user:Joris Gillis - Created with Maple 10, Public Domain, https://
commons.wikimedia.org/w/index.php?curid=521419

By U.S. Forest Service- Pacific Northwest Region - Okanogan-Wenatchee National Forest, morning
fog shrouds trees.jpg, Public Domain, https://commons.wikimedia.org/w/index.php?curid=72715391



Gradient descent

Starting with a guess x, consider the sequence x,, x;, x,, ...

Xnrl — X — Vn Vf (Xn)

For a small y, we obtain that

Jxp) = fx) =2 fx) > ...

y, can change at every iteration

Example: Barzilai-Borweing method
(xn _ xn—l)T[ Vf(xn) _ Vf('xn—l)] |
| VA(x,) — VAG,_1 | |7

'n



Gradient descent

Main limitation of gradient descent for learning:
e Evaluation of the gradient is computationally expensive

VAw,d), o € RY,d. € RM i € [1,K]

e » network parameters
e dataset {d,y;} with i € [1, K] with K big

To evaluate the function (gradient) one needs to use the
entire dataset (K samples)

Solution: stochastic approximation of gradient descent

Estimate the function (gradient) from a randomly
selected subset {d,y;},i €[], L],L < K



Stochastic gradient descent

First-order iterative optimization algorithm
to find a local minimum
of a differentiable function

Stochastic approximation of gradient descent
Reduces the computational cost:

e Faster iterations
e Lower convergence rate



Stochastic gradient descent

Minimize 1 U

M number of data points

w,. 1 =0 —rVf(w)
. M
= _MZZZI Vi(w)

L
In stochastic (“on-line”) gradient descent Vf(w) =~ Vf.(w)or Vf(w) = Z Vf:(w) (mini-batch)
i=1

Dy = @ = r V(@)



How to learn the weights?

Which optimization technique to use?
e Gradient Descent
e Stochastic Gradient descent (SGD)
e SGD variants:
o implicit updated (ISGD)
e averaging
e momentum
e RMSProp
e Adam
e BFGS (second order)

For the methods which are first order or higher:
e How to compute the gradients?



How to compute the gradients?
Backpropagation

Ola()

\*’/ w 2 | ag

= M(

‘0

%%)

Input layer : Hidden layers

Zz a2

‘ ‘ E ZKl aK

' Multiple
outputs



Backpropagation

f(zD) f(z'9)

@ s s

p(D xe)

@ o



Backpropagation

f(zD) f(z'9)

@ s s

p(D xe)

Equations

7D =Wy L pd
aD =f(Z(1)) =f(w(1)x + b(l))
Z(2) = w@qD 4 p@)

a® = f(z?) = fw@aD 4 p@)



Backpropagation

fz) fz?)
pD) b<2>/
Equations Learnable
Z(1) — W(l)x + b(l) parameters
aV = f(zM) = fwWVx + bW (D)
/D = @D 4 pD w="
qa®@ =f(Z(2)) =f(w(2)a(1) + b)) @ |




Backpropagation

fz) fz?)
p(D b<2>/
Equations Learnable Cost (Ioss)
Z(1) — W(l)x + b(l) parameters
aV = f(zM) = fwWVx + bW (D) C=Ck)
-2 = @50 4 p® W = f‘,(:z)) _ %(a@) _
a® =f(Z(2)) =f(w(2)a(1) + b(2)) ey




Backpropagation

vp

f(zD)

f(z'9)
VC

\ 2

o O

Compute the derivative of the cost wrt to the learnable parameters and update them

([ oC )
ow)
oC
obD
oC
ow2)
oC

\ 0b@) )

(VD)

VbHD
V@

(Vb

oC o0C 0a® 07?
Example: =

ow®  0a® 9:®  ow®

. oC
Update : w® « w, — r —(a;)
awi



Backpropagation

f(zD) f(z'9)

/ vpD / \VIN®S
Summary: |

- Forward pass computes a9 where derivatives are evaluated
 Chain-rule factorizes the derivatives
- Derivatives of activation functions are “closed form”
- Computing “backwards” allows to reuse the previous computations
- Can be massively parallelized:

- All individual partials can be parallelized

* Product is performed per-layer



How to learn the weights?

Two layers of abstraction:

1. Gradient computation:
» wWhere backpropagation comes to play

2. Optimization level:

- techniques like GD, SGD, Adam, Rprop, BFGS etc.
come into play

 use the computed gradient (or parts of it)



Exercice

You are presented with one neuron with two inputs X = (x1), x*)) and a single output y.
Your network initial weights are w') = 0.1, w® = —0.2and b = 0.2

Your activation function is a logistic function with k=1 : a(z) =

1+ e
We assume a learning rate r = 0.1

Your network should be optimized to recognize the following training data (X;, y;) with i € {1,2,3,4}

1
The cost to be optimized is C(X) = E(h(x) — y)2

Q1: Compute the updated parameters for the observation Xy, y; .
Q2: Will the neuron converge for this training data?

D[ g®

h(x) = a® 1 0 1 0




A note of weights initialization

How to initialize the weights?

Starting with all weights to 0 causes problems (weak signals)
Starting with all weights high causes problems (overflow)

Initialize with small random values:
e sampling from a normal distribution
e Xavier method - optimized for sigmoids
e He method - variant optimized for ReLU activation

Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep
feedforward neural networks." In Proceedings of the thirteenth international conference on
artificial intelligence and statistics, pp. 249-256. IMLR Workshop and Conference
Proceedings, 2010.



Big Families of Neural Networks

* Multi Layer Perceptron (MLP)
» Convolutional Neural Networks (CNNs)

» Autoencoders (AES)

» Variational Autoencoders (VAES)
* Generative Adversarial Networks (GANSs)
» Recurrent Neural Networks (RNNs)

* Long Short Temporal Memory (LSTMs)

» Graph Neural Networks (GNNs)

* Transformers



Convolution Neural Networks

* Are MLPs suitable for images?

X0 E 20 | ay




@ A convolutional neural network is a special feedforward network

@ Hidden units are organized into grid, as is the input

@ Linear mapping from layer to layer takes form of convolution

» Translation invariant processing
» Local processing

Convolution Pooling Convolution Pooling Fully
+RelU +RelU Connected

¢.~~

-

- ~——

Fully Output
Connected perdictions

dog (0.01)

Cat (0.01)
Boat (0.94)
Bird (0.94)

-
-
-

Slide from Xavier Alameda-Pineda



2D convolutions are linear operations:

— —
T el
el S brile
17 |4 Bl /fﬂ
1A X 1=
[

@ Start from the top-left position.
@ Multiply-and-add.
@ Store in the output image.

@ Go to next pixel position.

NNV

o [% ! L
0 X 1
/?0 /fq 1L
1 4 X// 0
rle ik 01
1|1 X 1
) _—

Slide from Xavier Alameda-Pineda



Convolutions in ConvNets

In ConvNets (or CNNs), the convolution filters or kernels have depth:

32x32x3 image

oxox3 filter
32 L/
I Convolve the filter with the image
i.e. “slide over the image spatially,

computing dot products”

32

Slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Slide from Xavier Alameda-Pineda



Convolutions in ConvNets (II)

What is the width and height of the output image?

__— 32x32x3 image

5x5x3 filter w
=
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image

32 (i.e. 5*5*3 = 75-dimensional dot product + bias)

] wiz+b

~~ 1 number:

Slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
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__— 32x32x3 image
5x5x3 filter

V
——0

convolve (slide) over all
spatial locations

32

Slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
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_— 32x32x%3 image activation maps

5x5x3 filter
2

convolve (slide) over all
spatial locations

32

Slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
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Convolutions in ConvNets (V)

32

28

Convolution Layer

32 28

Slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
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Convolutions in ConvNets (VI)

The filters must have the same depth as the input. The output depth corresponds to the
number of filters.

32 28

CONYV,
RelLU
e.qg.6
5x5x3
filters

32 28

Slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
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We can repeat the operation with a second convolutional layer.

32

32

CONYV,
RelLU
e.g.6
5x5x3
filters

CONV,
RelLU
e.g. 10
5x5x6
filters

CONV,
RelLU

10

Slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
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Different types of convolutions

e Standard

e Padded (full, half, etc)
e Strided

@ Dilated

@ ectc.

More details in
https://towardsdatascience.com/types-of-convolutions-in-deep-learning-71701339714d

Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep
learning." arXiv preprint arXiv:1603.07285 (2016).

Chapters 1 & 2 Slide from Xavier Alameda-Pineda



Pooling

Applied separately per feature channel
Effect: invariance to small translations of the input

)
)
@ Max and average pooling most common, other things possible
@ Parameter free layer

)

Similar to strided convolution with special non-trainable filter

max pooling
20 30
37
121201 30| O
8 1121 2| 0
3470|137 4 average pooling

112[100f 25| 12
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Receptive field

@ Receptive field is area in original image impacting a certain unit.
Later layers can capture more complex patterns over larger areas.

@ Receptive field size grows linearly over convolutional layers.
If we use a convolutional filter of size w X w, then each layer the receptive field increases
by w — 1.

NN N NN

AL WA AT
NN

d
d
|
]
v
7
%

'
\55\8
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Fully connected layers

@ Convolutional and pooling layers typically followed by several “fully connected” (FC)
layers, i.e. a standard MLP

@ FC layer connects all units in previous layer to all units in next layer

@ Assembles all local information into global vectorial representation

C1 Sl Cz Sz n, n;
input feature maps feature mapsfeature mapsfeature maps output
32x_32 S _28)(_28_ ix14 10x10_ . 5x5 I
=== N\ N
VO T
\ _— N oy
] %
convolution %2 2 ‘ \\ e fully N\
subsampling convolution 2x2 connected
—_— e e e SURsaMPling _\\ —_— l
feature extraction classification
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Drop-out regularisation

@ Main idea: deactivate a subset of neurons, randomly selected at every batch during
training.
@ If forces the network to be redundant, hence robust.

@ Different paths to recognise the same pattern.

b2y
CE O
KIANK X
KPVRK XS
LRKINM-EKA %
RIS LA
REEK KA
P2 X O
>() >
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Batch normalisation

@ Motivation: for very deep networks with ReLU, we quickly overflow (very large values).

@ Main idea: the output of the linear combinations must follow a standard Gaussian
distribution (zero mean, unit variance).

@ Rationale: then all layers work at a similar regime.

@ Usually after the fully connected or convolutional layers and before the non-linear
activation.

@ Compute the mean and variance for each neuron and:

@ Improves gradient flow and allows for larger learning rates.

@ It is an unsupervised process that can take place at test time as well.

Slide from Xavier Alameda-Pineda
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C3:f. maps 16@10x10

INPUT C1: feature maps S4: f. maps 16@5x5
i 6@28x28 62:f.mavs ©
- :layer g
6@14x14 120 y I:BGE1 layer ?gTPUT

|
‘ ‘ Full conAection ‘ Gaussian connections

Convolutions Subsampling Convolutions  Subsampling Full connection

Let's compute the # parameters and activations (input image is 32 x 32):
@ C1 (6 filters of 5 x 5):
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C3:f. maps 16@10x10
S4: f. maps 16@5x5

C5:layer Fe:layer OUTPUT

C1: feature maps

INPUT
30%32 6@28x28

S2: f. maps
6@14x14

|
‘ ‘ Full conAection ‘ Gaussian connections

Convolutions Subsampling Convolutions  Subsampling Full connection

Let's compute the # parameters and activations (input image is 32 x 32):
@ C1 (6 filters of 5 x 5): #par: (5 x5+ 1) x 6 =156 #act: 28 x 28 x 6 = 4704.
@ S2 (subsampling):

Slide from Xavier Alameda-Pineda



C3:f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

INPUT
6@28x28
32x32 S2: f. maps C5: layer .
6@14x14 Y FG: layer  QUTPUT

- ——

Full conAection ‘ Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

Let's compute the # parameters and activations (input image is 32 x 32):
@ C1 (6 filters of 5 x 5): #par: (5 x5+ 1) x 6 =156 #act: 28 x 28 x 6 = 4704.
@ S2 (subsampling): #par : 0 #act: 14 x 14 x 6 = 1176.
@ C3 (16 filters of 5 x 5):
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C3:f. maps 16@10x10

INPUT C1: feature maps S4: f. maps 16@5x5
3032 6@28x28 52:1, maps cs:
e . layer .
6@14x14 120 Yer F6:layer OUTPUT

84 10

P——

Full conAection ‘ Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

Let's compute the # parameters and activations (input image is 32 x 32):
@ C1 (6 filters of 5 x 5): #par: (5 x5+ 1) x 6 =156 #act: 28 x 28 x 6 = 4704.
@ S2 (subsampling): #par : 0 #act: 14 x 14 x 6 = 1176.
@ (3 (16 filters of 5 x 5): #par: (5 x5+ 1) x 16 x 6 = 2496 #act: 10 x 10 x 16 = 1600.
@ S4 (subsampling):
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C3:f. maps 16@10x10

INPUT C1: feature maps S4: f. maps 16@5x5
3032 6@28x28 52:1, maps cs:
e . layer .
6@14x14 120 Yer F6:layer OUTPUT

84 10

P——

Full conAection ‘ Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

Let's compute the # parameters and activations (input image is 32 x 32):
@ C1 (6 filters of 5 x 5): #par: (5 x5+ 1) x 6 =156 #act: 28 x 28 x 6 = 4704.
S2 (subsampling): #par : 0 #act: 14 x 14 x 6 = 1176.
C3 (16 filters of 5 x 5): #par: (5 x5+ 1) x 16 x 6 = 2496 #act: 10 x 10 x 16 = 1600.
S4 (subsampling): #par: 0 #act: 5 x 5 x 16 = 400.

]
]
]
@ C5 (FC output 120):
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Lenet (1998)

INPUT
32x32

Y

C3:f. maps 16@10x10

C1: feature maps S4:f. maps 16@5x5
6@28x28

S2: f. maps

o rrl_r

C5: layer
120 F6 layer OUTPUT

DN

—

‘ FuII coanectuon Gau33|an connections
Convolutions Subsampling Convolutlons Subsampllng Full connectlon

Let's compute the # parameters and activations (input image is 32 x 32):
® C1 (6 filters of 5 x 5): #par: (5 x 54 1) x 6 = 156 #act: 28 x 28 x 6 = 4704.

S2 (subsampling): #par : 0 #act: 14 x 14 x 6 = 1176.

C3 (16 filters of 5 x 5): #par: (5 x5+ 1) x 16 x 6 = 2496 #act: 10 x 10 x 16 = 1600.
S4 (subsampling): #par: 0 #act: 5 x 5 x 16 = 400.

C5 (FC output 120): #par: (400 + 1) x 120 = 48120 #act: 120.

F6 (FC output 84):

Slide from Xavier Alameda-Pineda



Lenet (1998)

INPUT
32x32

Y

C3:f. maps 16@10x10

C1: feature maps S4:f. maps 16@5x5
6@28x28

S2: f. maps

C5: layer
B@14x14 y F6 layer OUTPUT

120

CONN

—

‘ FuII coanectuon Gau33|an connections
Convolutions Subsampling Convolutlons Subsampllng Full connectlon

Let's compute the # parameters and activations (input image is 32 x 32):
® C1 (6 filters of 5 x 5): #par: (5 x 54 1) x 6 = 156 #act: 28 x 28 x 6 = 4704.

S2 (subsampling): #par : 0 #act: 14 x 14 x 6 = 1176.

C3 (16 filters of 5 x 5): #par: (5 x5+ 1) x 16 x 6 = 2496 #act: 10 x 10 x 16 = 1600.
S4 (subsampling): #par: 0 #act: 5 x 5 x 16 = 400.

C5 (FC output 120): #par: (400 + 1) x 120 = 48120 #act: 120.

F6 (FC output 84): #par: 120 x 84 = 10080 #act: 84.

Class (FC output 10):
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Lenet (1998)

INPUT
32x32

Y

C3:f. maps 16@10x10

C1: feature maps S4:f. maps 16@5x5
6@28x28

S2: f. maps

C5: layer
B@14x14 y F6 layer OUTPUT

120

CONN

—

‘ FuII coanectuon Gau33|an connections
Convolutions Subsampling Convolutlons Subsampllng Full connectlon

Let's compute the # parameters and activations (input image is 32 x 32):
® C1 (6 filters of 5 x 5): #par: (5 x 54 1) x 6 = 156 #act: 28 x 28 x 6 = 4704.

S2 (subsampling): #par : 0 #act: 14 x 14 x 6 = 1176.

C3 (16 filters of 5 x 5): #par: (5 x5+ 1) x 16 x 6 = 2496 #act: 10 x 10 x 16 = 1600.
S4 (subsampling): #par: 0 #act: 5 x 5 x 16 = 400.

C5 (FC output 120): #par: (400 + 1) x 120 = 48120 #act: 120.

F6 (FC output 84): #par: 120 x 84 = 10080 #act: 84.

Class (FC output 10): #par: 84 x 10 = 840 #act: 10.

Slide from Xavier Alameda-Pineda



What changed?

@ Large training datasets for computer vision

» 1.2 million images of 1000 classes in ImageNet challenge (2012)
» 200 million faces to train face recognition nets (2015)

@ GPU-based implementation: much faster than CPU

» Parallel computation for matrix products
» Krizhevsky & Hinton, 2012: six days on two GPUs (see next slide)
» Rapid progress in GPU compute performance

@ Network architectures

@ Industrially backed open-source software (Pytorch, TensorFlow, etc)

Slide from Xavier Alameda-Pineda



AlexNet CNN (2012)

@ Winner ImageNet 2012 image classification challenge, huge impact (+50k citations).

CNNs improving “traditional” computer vision techniques.
@ Compared to LeNet
» Inputs at 224x224 rather than 32x32
» 5 rather than 3 conv layers (more feature channels in each layer)
» ~ 60 million parameters
» RelLU non-linearity

224
¢ dense dense
’ 13 13 13 o
114\ 55 5
3 3 3
/l A 4 4 4 > — —>
11V s W W P
384 384 256 1000
224 256 Max Max 4096 4096
%6 Max pooling pooling
oolin
Stride Poong
3 of4
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VGG CNN (2015)

@ Double the number of layers (up to 16/19).
@ Only small 3 x 3 filters (rather than 11 in AlexNet). Same receptive field, less parameters
per layer, better learned. About 140 million parameters.

224 x 224 x 3 224 x 224 x 64

11X 012:%-128

%3‘ 2o 7x7x512
4 28 x 28 x 512

14 x 14 x 512

Lﬁ

1x1x4096 1x1x1000

AU (=7 convolution+ReLU
() max pooling
fully nected+RelLU

softmax
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Inception, Christopher Nolan, 2010



(S)z+LxL

AuoD)

Reduced number of parameters (5 million) but more layers (27 or 48).
Inception module to compress features before convolution.

Replaces fully-connected with average pooling.

Intermediate loss functions to improve training.
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3x3 convolutions

5x5 convolutions

1x1 convolutions

1x1 convolutions 4
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@ Many more layers (34, 50, 110, 1200), multi-GPU
training is required.

@ Residual module to ensure gradient flow.

@ Residual block does not require intermediate losses.

weight layer
F(x) l relu

weight layer

X
identity
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U-Net (2015)

@ Convolution/deconvolution architecture for tissue segmentation.

@ Convolutions downsample the feature maps (and increase the # channels).

@ Deconvolutions restore high-resolution image.

@ Skip connections allow to transfer information from intermediate representations to the
deconvolutions.

64 64

128 64 64 2

input

- output
image .
ge | el bt bl segmentation
tile alll of oo o

a2 & 8 map

=» conv 3x3, ReLU
copy and crop

¥ max pool 2x2

4 up-conv 2x2
=» conv 1x1
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@ Consider convolutional filters with less channels than the input.
@ The kernel can move also along channels, and convolve the input.
@ Can be used to process video frames (contactenated in a cube).

Slide from Xavier Alameda-Pineda






Finetunning pre-trained CNNs

@ Early CNN layers extract generic features that seem useful for different tasks.
Object localization, semantic segmentation, action recognition, etc.

@ On some datasets too little training data to learn CNN from scratch.
For example, only few hundred objects bounding box to learn from.

@ Pre-train AlexNet/VGGnet/ResNet/DenseNet on large scale dataset.
In practice mostly ImageNet classification: millions of labeled images.

@ Fine-tune CNN weights for task at hand, perhaps modifying the architecture.

» Replace classification layer, add bounding box regression, ...
» Reduced learning rate and possibly freezing early network layers

Slide from Xavier Alameda-Pineda



Pretrained network

}

Pretrained
convolutional
base

!

Pretrained
FC layers

}

From Yamashita et al “Convolutional neural networks: an overview and application in radiology” Insights into Imaging, 2018.

Fixed feature extraction method

Input

I
I

Pretrained
convolutional
base

Freeze

New classifier

i

I

Output

Fine-tuning method

Input

Pretrained
convolutional

base
Freeze

Fine-tuned
convolutional
base

rain

!

New FC layers

i: 0

I

Output
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Fine-tunning example

Human body pose regression
@ Remove the last layers of the network.
@ Add new layers regression the limbs position.
@ Change the loss e.g. Euclidean distance.

@ Fine-tune previously trained layers and train the new ones from scratch.

Slide from Xavier Alameda-Pineda



Overfit Problem




Overfit Problem

. o
..........

Time

Underfitted Good Fit/Robust Overfitted

Images from “Machine Learning: How to Prevent Overfitting”
https://medium.com/swlh/machine-learning-how-to-prevent-overfitting-fdf759cc00a9



Overfit Problem

The bias - variance tradeoff

Model is too simple, not “Expressive” enough

Accuracy can still be >0

“A broken clock is right twice a day”

Underfitted

High bias - low variance

Images from “Machine Learning: How to Prevent Overfitting”
https://medium.com/swlh/machine-learning-how-to-prevent-overfitting-fdf759cc00a9



Overfit Problem

The bias - variance tradeoff

Model is too complex, too “Expressive”

Very “accurate”

Does not generalize - useless!

Overfitted

Low bias - high variance

Images from “Machine Learning: How to Prevent Overfitting”
https://medium.com/swlh/machine-learning-how-to-prevent-overfitting-fdf759cc00a9



Overfit Problem

The bias - variance tradeoff

Tradeoff between bias and variance?

Relatively accurate

Relatively good generalization properties

Good Fit/Robust

moderate bias - moderate variance

Images from “Machine Learning: How to Prevent Overfitting”
https://medium.com/swlh/machine-learning-how-to-prevent-overfitting-fdf759cc00a9



Overfit Problem

The bias - variance tradeoff

S S— —

= high bias low bias Err
e low variance high variance

R T

o’

v

0

- —_— model
underfit overfit complexity

Ghojogh, Benyamin, and Mark Crowley. "The theory behind overfitting, cross validation,
regularization, bagging, and boosting: tutorial." arXiv preprint arXiv:1905.12787 (2019).



Avoiding Overfit

Training Set

/
Train and tune your models

(using cross-validation)
&

/

\

Don’t touch this
until the very end.

4

Images from “Machine Learning: How to Prevent Overfitting”
https://medium.com/swlh/machine-learning-how-to-prevent-overfitting-fdf759cc00a9



Avoiding Overfit

Validation set - super important!

Validation Training
Fold Fold
1st ‘ el
=
o 2nd ‘ —
-
<
w 3rd —
C
O
©
T 4th | — >
Y
5th >

Cross-validation (if possible)

Performance1

Performance 5

Performance 5

Performance 4

Performance 5

— Performance
5

1
==z Z Performance,
I =1

Images from “Machine Learning: How to Prevent Overfitting”
https://medium.com/swlh/machine-learning-how-to-prevent-overfitting-fdf759cc00a9



Avoiding Overfit

Early stop

Error

“sweet spot”
Validation error

Training error

Epochs

No convergence properties!



A note on accuracy

Validation Training
Fold Fold
1st — Performance
»
% 2nd —» Performance ,
U
<
® 3rd — Performance; | Pperformance
O ;8
© =73 Z Performance,
o 4th — Performance 4 P
X
5th — Performance g

The same method will have different results in different folds
-> what do you think is happening?



A note on accuracy

Validation Training
Fold Fold
1st —» Performance
»
% 2nd — Performance ,
U
<
® 3rd — Performance; | Pperformance
O ;8
© =73 Z Performance,
o 4th — Performance 4 P
¢
5th — Performance g

Evaluate on easy “naive” baselines (underfit)



@ A teacher (large) and a student (small) network.
@ Teacher is pre-trained.
@ The student is trained to imitate the output of the teacher network (before soft-max).

@ Training the student directly does not work!

Teacher Model
(large neural network)

soft labels
predictions

Teacher

distilled| knowledge

hard labels

predictions € true label

Training data
Student
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awkward silence (Al Winter)

1969 1995 2006 2012
Perceptron criticized SVM reigns  Restricted  AlexNet wins
2 e Boltzmann ImageNet
. Machine | g A GENET

Image from https://www.slideshare.net/LuMa921/deep-learning-a-visual-introduction.
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