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A bit of history

In 2012 there was a three-fold break-through: data (ImageNet),
computation (GPU) and architectures.

Image from https://www.slideshare.net/LuMa921/deep-learning-a-visual-introduction.
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McCulloch-Pitts neuron (1943) 

Warren McCulloch (neuroscientist) 
Walter Pitts (logician)

Images from  
https://towardsdatascience.com/mcculloch-pitts-model-5fdf65ac5dd1

g: aggregates information
f:  takes a decision
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AND function

McCulloch-Pitts neuron (1943) 

Images from  
https://towardsdatascience.com/mcculloch-pitts-model-5fdf65ac5dd1

θ = 3



OR function

McCulloch-Pitts neuron (1943) 

Images from  
https://towardsdatascience.com/mcculloch-pitts-model-5fdf65ac5dd1

θ = 1



Inhibitory inputs:  
if present, output is zero 
 
NOT example

McCulloch-Pitts neuron (1943) 

Images from  
https://towardsdatascience.com/mcculloch-pitts-model-5fdf65ac5dd1



Inhibitory inputs:  
if present, output is zero 
 
Other combinations

McCulloch-Pitts neuron (1943) 

Images from  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Geometric interpretation

McCulloch-Pitts neuron (1943) 
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• Use data to learn the coefficients 

• Observations - training set  

• Learnable parameters

D

Frank Rosenblatt Perceptron (1956)

f(g(x)) = {1 if w . x + b > 0
0 otherwise

{x ∈ ℝN input
y ∈ 𝔹 output binary

{w ∈ ℝN weights
b ∈ ℝ bias

f(g(x)) = y
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By Omegatron - Own work, CC BY-SA 3.0, https://
commons.wikimedia.org/w/index.php?curid=801382

 : activation functionf



Frank Rosenblatt Perceptron (1956)

Optimization 
• Initialize weights  to zero (or small random) 

• For each sample : 
• Compute prediction 

• Update all weights 

w

j in the training set D = {xj, dj}

0 ≤ i ≤ N − 1

yj(t) = f(w(t) . xj)
= f(w0(t) xj,0 + w1(t) xj,1 + w2(t) xj,2 + … + wN−1(t) xj,N−1)

wi(t + 1) = wi(t) + r ⋅ (dj − yj(t)) xj,i

r learning rate (usually small)



Limitations: 
• The perceptron learning algorithm does not terminate if the 

learning set is not linearly separable 
• Needs a limit on the number of iterations! 

• Example: exclusive OR (XOR) 
• Algorithm fails completely! (no approx. solution)

Frank Rosenblatt Perceptron (1956)



Frank Rosenblatt Perceptron (1956)

https://playground.tensorflow.org



Limitations: 
• Perceptron can’t choose “The best solution” 

• Motivation for the linear SVM 
“perceptron of optimal stability” 
(Krauth and Mezard, 1987)

Frank Rosenblatt Perceptron (1956)

By Qwertyus - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=41351528



Frank Rosenblatt Perceptron (1956)

• Controversy

Olazaran, Mikel (1996). "A Sociological Study of the Official History of the Perceptrons Controversy". 
Social Studies of Science. 26 (3): 611–659

The perceptron in … “the embryo of an electronic computer that [the 
Navy] expects will be able to walk, talk, see, write, reproduce itself and be 
conscious of its existence.” 

The New York Times, 1958



Multi-Layer Perceptron

https://playground.tensorflow.org

Two layers can handle the “non linear separable set” limitation



Multi-Layer Perceptron
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Multi-Layer Perceptron
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Multi-Layer Perceptron
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Multi-Layer Perceptron
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Multi-Layer Perceptron
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• Play a major role  

• Original perceptron: heavy side step-function 

• Many variants: 
• Linear 
• Logistic 
• tanh 
• ReLU - rectified linear unit 
• GeLU - Gaussian error linear unit 
• …

Activation functions
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• Limitations of linear functions: 
• A N-layer network can be written as a 2-layer network

Activation functions



Linear activations
Consider a network with a single hidden layer and two activation
functions ⇣ and �:

yk(x) = �

0

@
X

j

w(2)
kj ⇣

 
X

i

w(1)
ji xi

!1

A

If the activation functions are linear, then we can rewrite the
equations in the following vectorial notation:

y = (�.W (2))(⇣.W (1)x)

= W (2)0(W (1)0x)

= W
00
x

Linear activation functions result in linear models!
! The activation functions between layers should be non-linear.

Original Slide from Christian Wolf
https://perso.liris.cnrs.fr/christian.wolf/teaching/



Activation functions

tanh(x) = 2
1 + e−2x − 1 = ex − e−x

ex + e−x

σ(x) = 1
1 + e−x = ex

ex + 1

Logistic function

Examples

Hyperbolic tangent

σ(x) = 1
1 + e−kx , with k = 1



Activation functions

Limitations of “sigmoid” functions: tanh and logistic 

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

… the hyperbolic tangent activation function typically performs better than the logistic sigmoid. - Page 195

 … sigmoidal units saturate across most of their domain—they saturate to a high value when z 
is very positive, saturate to a low value when z is very negative, and are only strongly 
sensitive to their input when z is near 0. - Page 195

 Vanishing gradients make it difficult to know which direction the parameters should move to 
improve the cost function - Page 290



Activation functions

• Motivation of ReLU 
• Computational Simplicity 
• Representation Sparsity - can output true zero values 
• Linear Behavior

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

… [another] major algorithmic change that has greatly improved the performance of feedforward 
networks was the replacement of sigmoid hidden units with piecewise linear hidden units, such as 
rectified linear units. - Page 226

Computations are also cheaper: there is no need for computing the exponential function in activations. -  
Page 226

ReLU(x) = max(0,x)



A continuous function can be approximated with a 
linear combination of translated/scaled ReLU functions

Universal approximation



We can approximate any  2 C([a, b],R) with a linear combination of
translated/scaled ReLU functions.

f (x) = �(w1x + b1) + �(w2x + b2) + �(w3x + b3) + . . .

This is true for other activation functions under mild assumptions.

François Fleuret Deep learning / 3.4. Multi-Layer Perceptrons 7 / 10

Original Slides from François Fleuret
https://www.idiap.ch/~fleuret/
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Activation functions

• Variant of ReLU: 
• GeLU - Gaussian Error Linear Unit

Hendrycks, Dan, and Kevin Gimpel. "Gaussian error linear units (gelus)." 
arXiv preprint arXiv:1606.08415 (2016).

By Ringdongdang - Own work, CC BY-SA 4.0, https://
commons.wikimedia.org/w/index.php?curid=95947821



How to learn the weights?
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Frank Rosenblatt Perceptron (1956)

Optimization 
• Initialize weights  to zero (or small random) 

• For each sample : 
• Compute prediction 

• Update all weights 

w

j in the training set D = {xj, dj}

0 ≤ i ≤ N − 1

yj(t) = f(w(t) . xj)
= f(w0(t) xj,0 + w1(t) xj,1 + w2(t) xj,2 + … + wN−1(t) xj,N−1)

wi(t + 1) = wi(t) + r ⋅ (dj − yj(t)) xj,i

r learning rate (usually small)



Frank Rosenblatt Perceptron (1956)

Optimization 
• Initialize weights  to zero (or small random) 

• For each sample : 
• Compute prediction 

• Update all weights 

w

j in the training set D = {xj, dj}

0 ≤ i ≤ N − 1

yj(t) = f(w(t) . xj)
= f(w0(t) xj,0 + w1(t) xj,1 + w2(t) xj,2 + … + wN−1(t) xj,N−1)

wi(t + 1) = wi(t) + r ⋅ (dj − yj(t)) xj,i

r learning rate (usually small)

Update done for each observed sample - stochastic gradient descent



Gradient descent

First-order iterative optimization algorithm 
to find a local minimum 
of a differentiable function

f : ℝD → ℝ
x → f(x1, …, xD)

∇f : ℝD → ℝD

x → ( ∂f
∂x1

(x), …,
∂f

∂xD
(x))



By U.S. Forest Service- Pacific Northwest Region - Okanogan-Wenatchee National Forest, morning 
fog shrouds trees.jpg, Public Domain, https://commons.wikimedia.org/w/index.php?curid=72715391

By user:Joris Gillis - Created with Maple 10, Public Domain, https://
commons.wikimedia.org/w/index.php?curid=521419

Fog in the mountain analogy

Gradient descent



For a small γn we obtain that
f(x0) ≥ f(x1) ≥ f(x2) ≥ …

Gradient descent

 Example: Barzilai-Borweing method

γn =
| (xn − xn−1)T[∇f(xn) − ∇f(xn−1)] |

| |∇f(xn) − ∇f(xn−1 | |2

Starting with a guess x0 consider the sequence x0, x1, x2, …
xn+1 = xn − γn ∇f(xn)

γn can change at every iteration



Gradient descent

Main limitation of gradient descent for learning: 
•Evaluation of the gradient is computationally expensive 

•  network parameters 
• dataset  

To evaluate the function (gradient) one needs to use the 
entire dataset (K samples) 

Solution: stochastic approximation of gradient descent  
Estimate the function (gradient) from a randomly 
selected subset 

ω
{di, yi} with i ∈ [1, K] with K big

{di, yi}, i ∈ [1, L], L ≪ K

∇f(ω, di), ω ∈ ℝN, di ∈ ℝM, i ∈ [1,K]



Stochastic gradient descent

First-order iterative optimization algorithm 
to find a local minimum 
of a differentiable function 

Stochastic approximation of gradient descent 

Reduces the computational cost: 
• Faster iterations 
• Lower convergence rate



Stochastic gradient descent

f(ω) =
1
M

M

∑
i=1

fi(ω)
Minimize

M number of data points

ωn+1 = ω − r∇f(w)

= ω −
r
M

M

∑
i=1

∇fi(ω)

In stochastic (“on-line”) gradient descent  or  (mini-batch)∇f(w) ≈ ∇fi(w) ∇f(w) ≈
L

∑
i=1

∇fi(w)

ωn+1 = ω − r∇fi(ω)



How to learn the weights?

Which optimization technique to use? 
• Gradient Descent 
• Stochastic Gradient descent (SGD) 
• SGD variants: 

• implicit updated (ISGD) 
• averaging 
• momentum  
• RMSProp 
• Adam 

• BFGS (second order) 
• … 

For the methods which are first order or higher: 
• How to compute the gradients?



How to compute the gradients? 
Backpropagation
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x z(1) |a(1) z(2) |a(2)

1 1

w(1) w(2)

b(2)b(1)

f(z(2))f(z(1))

Backpropagation



z(1) = w(1)x + b(1)

a(1) = f(z(1)) = f(w(1)x + b(1))
z(2) = w(2)a(1) + b(2)

a(2) = f(z(2)) = f(w(2)a(1) + b(2))

Equations

Backpropagation

x z(1) |a(1) z(2) |a(2)

1 1

w(1) w(2)

b(2)b(1)

f(z(2))f(z(1))



w =

w(1)

b(1)

w(2)

b(2)

Equations Learnable  
parameters

Backpropagation

x z(1) |a(1) z(2) |a(2)

1 1

w(1) w(2)

b(2)b(1)

f(z(2))f(z(1))

z(1) = w(1)x + b(1)

a(1) = f(z(1)) = f(w(1)x + b(1))
z(2) = w(2)a(1) + b(2)

a(2) = f(z(2)) = f(w(2)a(1) + b(2))



Equations Learnable  
parameters Cost (loss)

C = C(x)

=
1
2

(a(2) − y)2

Backpropagation

x z(1) |a(1) z(2) |a(2)

1 1

w(1) w(2)

b(2)b(1)

f(z(2))f(z(1))

w =

w(1)

b(1)

w(2)

b(2)

z(1) = w(1)x + b(1)

a(1) = f(z(1)) = f(w(1)x + b(1))
z(2) = w(2)a(1) + b(2)

a(2) = f(z(2)) = f(w(2)a(1) + b(2))



Backpropagation

x z(1) |a(1) z(2) |a(2)

1 1

∇w(1) ∇w(2)

∇b(2)∇b(1)

f(z(2))f(z(1))

∇C

Compute the derivative of the cost wrt to the learnable parameters and update them

∇C =
∂C
∂w

=

∂C
∂w(1)

∂C
∂b(1)

∂C
∂w(2)

∂C
∂b(2)

=

∇w(1)

∇b(1)

∇w(2)

∇b(2)

Example: ∂C
∂w(2)

=
∂C

∂a(2)
⋅

∂a(2)

∂z(2)
⋅

∂z(2)

∂w(2)

Update : w(i) ← wi − r
∂C
∂wi

(ai)



Backpropagation

Summary:
• Forward pass computes  where derivatives are evaluated
• Chain-rule factorizes the derivatives
• Derivatives of activation functions are “closed form”
• Computing “backwards” allows to reuse the previous computations
• Can be massively parallelized:

• All individual partials can be parallelized
• Product is performed per-layer

a(i)

x z(1) |a(1) z(2) |a(2)

1 1

∇w(1) ∇w(2)

∇b(2)∇b(1)

f(z(2))f(z(1))

∇C



Two layers of abstraction:

1. Gradient computation:
• where backpropagation comes to play

2. Optimization level:
• techniques like GD, SGD, Adam, Rprop, BFGS etc. 

come into play
• use the computed gradient (or parts of it)

How to learn the weights?



Exercice

m  x1 x2 y

1 0 1 0

2 1 0 1

3 1 1 1

4 0 0 0

x(1)

1

x(2) z(1) |a(1)

w(1)

w(2)

b
h(x) = a(1)

Q1: Compute the updated parameters for the observation 
Q2: Will the neuron converge for this training data?

x1, y1 .

You are presented with one neuron with two inputs  and a single output .
Your network initial weights are 
Your activation function is a logistic function with k=1 : 
We assume a learning rate 
Your network should be optimized to recognize the following training data 

The cost to be optimized is 

x = (x(1), x(2)) y
w(1) = 0.1, w(2) = − 0.2 and b = 0.2

a(z) = 1
1 + ez

r = 0.1
(xi, yi) with i ∈ {1,2,3,4}

C(x) =
1
2

(h(x) − y)2



A note of weights initialization

How to initialize the weights? 

Starting with all weights to 0 causes problems (weak signals) 
Starting with all weights high causes problems (overflow) 

Initialize with small random values: 
• sampling from a normal distribution 
• Xavier method - optimized for sigmoids 
• He method - variant optimized for ReLU activation 

Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep 
feedforward neural networks." In Proceedings of the thirteenth international conference on 
artificial intelligence and statistics, pp. 249-256. JMLR Workshop and Conference 
Proceedings, 2010.



Big Families of Neural Networks

• Multi Layer Perceptron (MLP) 

• Convolutional Neural Networks (CNNs) 

• Autoencoders (AEs) 
• Variational Autoencoders (VAEs) 

• Generative Adversarial Networks (GANs) 
• Recurrent Neural Networks (RNNs) 
• Long Short Temporal Memory (LSTMs) 

• Graph Neural Networks (GNNs) 

• Transformers



Convolution Neural Networks

• Are MLPs suitable for images?

x0

1

x1

x2

z0
0 |a0

0

1

z0
1 |a0

1

z0
2 |a0

2

z3
0 |a3

0z1
0 |a1

0

1

z1
1 |a1

1

z2
0 |a2

0

1

z2
1 |a2

1

z3
K |a3

K

…
…



CNN: Overview

A convolutional neural network is a special feedforward network

Hidden units are organized into grid, as is the input

Linear mapping from layer to layer takes form of convolution
I Translation invariant processing
I Local processing
I Decouples # of parameters from input size
I Same net can process inputs of varying size
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2D convolutions

2D convolutions are linear operations:

Start from the top-left position.

Multiply-and-add.

Store in the output image.

Go to next pixel position.
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Convolutions in ConvNets

In ConvNets (or CNNs), the convolution filters or kernels have depth:

Slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
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Convolutions in ConvNets (II)

What is the width and height of the output image?

Slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
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Convolutions in ConvNets (III)

Slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

9 / 59

Slide from Xavier Alameda-Pineda



Convolutions in ConvNets (IV)

Slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
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Convolutions in ConvNets (V)

Slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
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Convolutions in ConvNets (VI)

The filters must have the same depth as the input. The output depth corresponds to the
number of filters.

Slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
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Convolutions in ConvNets (VII)

We can repeat the operation with a second convolutional layer.

Slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
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Di↵erent types of convolutions

Standard

Padded (full, half, etc)

Strided

Dilated

etc.

http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html
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https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d
More details in 

Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep 
learning." arXiv preprint arXiv:1603.07285 (2016). 
Chapters 1 & 2



Pooling

Applied separately per feature channel
E↵ect: invariance to small translations of the input
Max and average pooling most common, other things possible
Parameter free layer
Similar to strided convolution with special non-trainable filter
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Receptive field

Receptive field is area in original image impacting a certain unit.
Later layers can capture more complex patterns over larger areas.
Receptive field size grows linearly over convolutional layers.
If we use a convolutional filter of size w ⇥ w , then each layer the receptive field increases
by w � 1.
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Fully connected layers

Convolutional and pooling layers typically followed by several “fully connected” (FC)
layers, i.e. a standard MLP

FC layer connects all units in previous layer to all units in next layer

Assembles all local information into global vectorial representation

17 / 59

Slide from Xavier Alameda-Pineda



Drop-out regularisation

Main idea: deactivate a subset of neurons, randomly selected at every batch during
training.

If forces the network to be redundant, hence robust.

Di↵erent paths to recognise the same pattern.
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Batch normalisation

Motivation: for very deep networks with ReLU, we quickly overflow (very large values).

Main idea: the output of the linear combinations must follow a standard Gaussian
distribution (zero mean, unit variance).

Rationale: then all layers work at a similar regime.

Usually after the fully connected or convolutional layers and before the non-linear
activation.

Compute the mean and variance for each neuron and:

xnew =
xold � µp

⌫

.

Improves gradient flow and allows for larger learning rates.

It is an unsupervised process that can take place at test time as well.
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CNN Architectures
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Lenet (1998)

Let’s compute the # parameters and activations (input image is 32⇥ 32):
C1 (6 filters of 5⇥ 5):

#par: (5⇥ 5 + 1)⇥ 6 = 156 #act: 28⇥ 28⇥ 6 = 4704.

S2 (subsampling): #par : 0 #act: 14⇥ 14⇥ 6 = 1176.

C3 (16 filters of 5⇥ 5): #par: (5⇥ 5 + 1)⇥ 16⇥ 6 = 2496 #act: 10⇥ 10⇥ 16 = 1600.

S4 (subsampling): #par: 0 #act: 5⇥ 5⇥ 16 = 400.

C5 (FC output 120): #par: (400 + 1)⇥ 120 = 48120 #act: 120.

F6 (FC output 84): #par: 120 ⇤ 84 = 10080 #act: 84.

Class (FC output 10): #par: 84 ⇤ 10 = 840 #act: 10.
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What changed?

Large training datasets for computer vision
I 1.2 million images of 1000 classes in ImageNet challenge (2012)
I 200 million faces to train face recognition nets (2015)

GPU-based implementation: much faster than CPU
I Parallel computation for matrix products
I Krizhevsky & Hinton, 2012: six days on two GPUs (see next slide)
I Rapid progress in GPU compute performance

Network architectures

Industrially backed open-source software (Pytorch, TensorFlow, etc)
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AlexNet CNN (2012)

Winner ImageNet 2012 image classification challenge, huge impact (+50k citations).
CNNs improving “traditional” computer vision techniques.
Compared to LeNet

I Inputs at 224x224 rather than 32x32
I 5 rather than 3 conv layers (more feature channels in each layer)
I ⇠ 60 million parameters
I ReLU non-linearity
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VGG CNN (2015)

Double the number of layers (up to 16/19).
Only small 3⇥ 3 filters (rather than 11 in AlexNet). Same receptive field, less parameters
per layer, better learned. About 140 million parameters.
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Inception, Christopher Nolan, 2010



GoogleNet Inception CNN (2015)

Reduced number of parameters (5 million) but more layers (27 or 48).
Inception module to compress features before convolution.
Replaces fully-connected with average pooling.
Intermediate loss functions to improve training.
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Res(idual)Net CNN (2015)

Many more layers (34, 50, 110, 1200), multi-GPU
training is required.

Residual module to ensure gradient flow.

Residual block does not require intermediate losses.
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U-Net (2015)

Convolution/deconvolution architecture for tissue segmentation.
Convolutions downsample the feature maps (and increase the # channels).
Deconvolutions restore high-resolution image.
Skip connections allow to transfer information from intermediate representations to the
deconvolutions.
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C3D or 3D ConvNets (2015)

Consider convolutional filters with less channels than the input.
The kernel can move also along channels, and convolve the input.
Can be used to process video frames (contactenated in a cube).
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Finetunning pre-trained CNNs

Early CNN layers extract generic features that seem useful for di↵erent tasks.
Object localization, semantic segmentation, action recognition, etc.

On some datasets too little training data to learn CNN from scratch.
For example, only few hundred objects bounding box to learn from.

Pre-train AlexNet/VGGnet/ResNet/DenseNet on large scale dataset.
In practice mostly ImageNet classification: millions of labeled images.

Fine-tune CNN weights for task at hand, perhaps modifying the architecture.

I Replace classification layer, add bounding box regression, ...
I Reduced learning rate and possibly freezing early network layers
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Finetunning pre-trained CNNs (II)

From Yamashita et al “Convolutional neural networks: an overview and application in radiology” Insights into Imaging, 2018.
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Fine-tunning example

Human body pose regression

Remove the last layers of the network.

Add new layers regression the limbs position.

Change the loss e.g. Euclidean distance.

Fine-tune previously trained layers and train the new ones from scratch.
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Overfit Problem

Plane Dog Table Cat

Plane!



Overfit Problem

Images from “Machine Learning: How to Prevent Overfitting”
https://medium.com/swlh/machine-learning-how-to-prevent-overfitting-fdf759cc00a9
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Images from “Machine Learning: How to Prevent Overfitting”
https://medium.com/swlh/machine-learning-how-to-prevent-overfitting-fdf759cc00a9

Model is too simple, not “Expressive” enough

The bias - variance tradeoff

Accuracy can still be > 0

“A broken clock is right twice a day”

High bias - low variance



Overfit Problem

Images from “Machine Learning: How to Prevent Overfitting”
https://medium.com/swlh/machine-learning-how-to-prevent-overfitting-fdf759cc00a9

Model is too complex, too “Expressive”

The bias - variance tradeoff

Very “accurate”

Does not generalize - useless!

Low bias - high variance



Overfit Problem

Images from “Machine Learning: How to Prevent Overfitting”
https://medium.com/swlh/machine-learning-how-to-prevent-overfitting-fdf759cc00a9

Tradeoff between bias and variance?

The bias - variance tradeoff

Relatively accurate

Relatively good generalization properties

moderate bias - moderate variance



Overfit Problem

The bias - variance tradeoff

Ghojogh, Benyamin, and Mark Crowley. "The theory behind overfitting, cross validation, 
regularization, bagging, and boosting: tutorial." arXiv preprint arXiv:1905.12787 (2019).



Avoiding Overfit

Images from “Machine Learning: How to Prevent Overfitting”
https://medium.com/swlh/machine-learning-how-to-prevent-overfitting-fdf759cc00a9



Avoiding Overfit

Images from “Machine Learning: How to Prevent Overfitting”
https://medium.com/swlh/machine-learning-how-to-prevent-overfitting-fdf759cc00a9

Validation set - super important! Cross-validation (if possible)



Avoiding Overfit

Early stop

No convergence properties!

Error

Epochs

Training error

Validation error
“sweet spot”



A note on accuracy

The same method will have different results in different folds
-> what do you think is happening?



A note on accuracy

Evaluate on easy “naive” baselines (underfit)



Distillation [Hinton et al., 2015]

A teacher (large) and a student (small) network.

Teacher is pre-trained.

The student is trained to imitate the output of the teacher network (before soft-max).

Training the student directly does not work!
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A bit of history

In 2012 there was a three-fold break-through: data (ImageNet),
computation (GPU) and architectures.

Image from https://www.slideshare.net/LuMa921/deep-learning-a-visual-introduction.
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