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Worked-out example

You want to model the fuel consump-

tion (L/100km) with respect to the

speed (km/h).

1



Worked-out example: the training data

Your neighbor, gives you her home-

made measurements.

It consists in (xi , yi ), i = 1, ..60
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Worked-out example: choose the model

We want to model the fuel consumption y (L/100km) with respect to the car

speed x (in km/h).

What model could you use for the dependency between x and y?

By a simple linear regression model:

y = θ0 + θ1x + ε with ε ∼ N (0,σ2)

What is the associated loss?

Loss

Write the negative log-likelihood:
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Worked-out example: the fit
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Worked-out example: the prediction
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Worked-out example: the prediction

0 50 100 150 200

0
5

10
15

x = Speed in km/h

y 
=

 C
on

su
m

pt
io

n 
L/

10
0k

m
+

5



Worked-out example: toward more complex models
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Any comment?

This phenomenon is known as underfitting
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Worked-out example: toward more complex models
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Worked-out example: toward more complex models

θ0, θ1..., θ5 such that

L(θ0, ..., θ5) =
N∑
i=1

(
yi −

( 5∑
j=0

θjx
j
i

))2

(1)

is minimal.
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Worked-out example: toward more complex models
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Worked-out example: toward more complex models

Informal definition

We will say that the polynomial model of degree 5 is more expressive than the

linear regression.
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Parameters: the more the better?
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With 30 parameters: θ0, ...θ29

Definition

The phenomenon is called overfitting. Mainly happens because of

hyperparametrization.

How to control overfitting?
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Cross-validation to control overfit
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Cross-validation example: 30 parameters

Red: training set Black: validation set
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Cross-validation example: 6 parameters

Red: training set Black: validation set
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What do you observe?

- Lower error on training with parameters

- If the error on the validation is much higher than on the training set, it

means that the model is .

- Naively, a model with parameters will have variance.
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What do you observe?

- Lower error on training with more parameters

- If the error on the validation is much higher than on the training set, it

means that the model is overfitting.

- Naively, a model with more (less) parameters will have more (less)

variance.
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More specifically, for N training sets Xi ∈ Xtrain we compute N models fi and their

predictions fi (Xtest). The expectation of the squared error (mean sq error) of all

models E[||y − ŷ ||2] can be decomposed as:

E[||y − ŷ ||2] = E[||y − E[ŷ ] + E[ŷ ]− ŷ ||2]

= E[||y − E[ŷ ]||2] + 2× 0 + E[||E[ŷ ]− ŷ ||2]

= ||y − E[ŷ ]||2 + E[||E[ŷ ]− ŷ ||2]

= bias2 + variance

(1)

where E[ŷ ] is the mean of the predictions of all models.

This is known as the bias-variance trade-off:
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Regularization motivation

Let’s come back to the model y =
3∑

i=0

θix
i + ε.

The max likelihood with 4 points gives a θ fitting perfectly the points:
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Maximum likelihood coefficients:

θ0 θ1 θ2 θ3

-23 157 283 156

What makes you think that the model is wrong?
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Regularization
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The idea of regularization

Definition (well...)

Regularization is a set of methods for avoiding ”unrealistic zones” in your

parameter space.

Along the tutorials we will use:

- Ridge penalization (avoids high values of parameters)

- Lasso penalization (favors not using some parameters)

Other types of regularization (for Neural Networks in particular) include:

- Gaussian noise (augmenting data)

- Dropout (favors independence in the responsibilities of the parameters)
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Prior distributions

In the Bayesian world, probabilities represent the degree of knowledge.

So we can integrate a priori knowledge in our model.

We consider θ0, ...θ3 as random variables (i.e. quantity having uncertainties).

We model them, for example with normal distributions centered on likely values

(e.g. µ0 = 0.1, µ1 = ...) with some likely variability (e.g. η0 = 0.005, etc.).

The model becomes:

ε ∼ N (0,σ2)

θi ∼ N (µi , η
2
i )

y =
∑

θix
i + ε

What is ”random” here?

The θi are model parameters (inferred from the training data).

The µi and ηi are hyperparameters (not inferred from the training).
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Worked out example

Consider a simple model:

ε ∼ N (0,σ2)

θ ∼ N (0, η2)

y = θx + ε

Exercise

1. Compute the posterior probability distribution

p(θ|y , x) ∝ p(y |θ, x)p(θ)

2. Show that maximizing the posterior probability distribution is the same as

solving the following optimization problem:

arg min
θ

N∑
i=0

(yi − θxi )
2 + λ||θ||22

3. What it is the value of λ?
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Toward Ridge regularization

min
θ

N∑
i=0

(yi − θxi )
2

→ min
θ

N∑
i=0

(yi − θxi )
2 + λ||θ||22

This is called Ridge regularization.

What is it enforcing?

It tells the model to avoid high values for the parameters.
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General justification of Ridge regularization

Complexity

The complexity of a model is the dimensionality of the space it can describe,

usually linked to the number of parameters.

A model with p binary parameters θi can describe ? outputs.

How would you measure that for continuous parameters?

With the volume:

Vp(r) = Kpr
p,

where r is the radius where the parameters live and Kp a constant associated

with the number of parameters.

High dimension

In high dimension, there are ”more” possible model outputs when parameters

have high values.
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Ridge regularization example

Let’s come back to the model Y =
3∑

i=0

θix
i + ε.

The maximum likelihood with 4 points will give a θ fitting perfectly the points:
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Maximum likelihood coefficients:

θ0 θ1 θ2 θ3

-23 157 283 156
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Ridge regularization example

Let’s come back to the model Y =
3∑

i=0

θix
i + ε.

With a prior N (0, η2) the maximum a posteriori of the vector θ corresponds to

(blue curve):

0.0 0.2 0.4 0.6 0.8 1.0

1
2
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x

y

Maximum a posteriori coefficients

θ0 θ1 θ2 θ3

1.3 5.4 -0.7 -3.3
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Sparse learning

Patient Status SNP1 SNP2 SNP3 SNP4 ...

A 0 0 0 0 1 ...

B 1 1 0 0 1 ...

C 1 1 0 0 0 ...

...
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From Ridge to Lasso

Suppose you model a variable Y depending on some explanatory variables x

with a linear model:

Y = θ0 +
p∑

i=1

θixi + ε

Imagine now that you know that actually only few variables actually explain

your target variable.

Question

A Gaussian prior on θi centered on 0 avoids high values of θi .

Will this prior push the non-explanatory variables down to 0?

- Think individually - Draw - Rethink (5’)

- Vote
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Lasso penalization

What should be the shape around 0 of the prior distribution if we want to use

less parameters?

Something like the Laplace density:

−3 −2 −1 0 1 2 3

0.1

0.2
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0.4

0.5

Gaussian

Laplace

f (x |µ, b) = 1
2b
e−
|x−µ|

b
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Lasso penalization

−3 −2 −1 0 1 2 3
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0.4

0.5

Gaussian

Laplace

f (x |µ, b) = 1
2b
e−
|x−µ|

b

Exercise

Compute the loss associated to a zero centered Laplace prior distribution.
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Toward Lasso regularization

min
θ

N∑
i=0

(yi − θ.xi )
2

→ min
θ

N∑
i=0

(yi − θxi )
2 + λ||θ||1

This is called Lasso regularization.

What is it enforcing?

It tells the model to use as few parameters as possible.
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The idea of regularization

Definition (well...)

Regularization is a set of methods for avoiding ”unrealistic zones” in your

parameter space.

We saw:

- Ridge penalization (avoids high values of parameters)

- Lasso penalization (favors not using some parameters)

Other types of regularization (for Neural Networks in particular) include:

- Gaussian noise (augmenting data)

- Dropout (favors independence in the responsibilities of the parameters)
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