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Supervised and unsupervised learning

Make sense of the data
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Supervised vs unsupervised learning

Two main categories of machine learning algorithms:

- Supervised learning: predict output Y from some input data X . The training data has a

known label Y .

Examples:

– X is a picture, and Y is a cat or a dog

– X is a picture, and Y ∈ {0, . . . , 9} is a digit

– X is are videos captured by a robot playing table

tennis, and Y are the parameters of the robots to

return the ball correctly
?

?

?

- Unsupervised learning: training data is not labeled and does not have a known result

Examples:

– detect change points in a non-stationary time-series

– detect outliers

– clustering: group data in homogeneous groups

– principal component analysis: compress data without

loosing much information

– density estimation

– dictionary learning

?
? ?

?

?

?

?

?
?

?

?

- Others: reinforcement learning, semi-supervised learning, online learning,. . .
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Supervised vs unsupervised learning

Two main categories of machine learning algorithms:

- Supervised learning: predict output Y from some input data X . The training data has a

known label Y .

Classification Regression

KNN, SVM, Neural Nets,

Logistic regression, Decision

Trees, Random Forest, . . .

Lasso, Ridge

Nearest Neighbors

Neural Networks,. . . ?
?

?1
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- Unsupervised learning: training data is not labeled and does not have a known result

Clustering
Dimensionality

reduction

K-means, the Apriori al-

gorithm, Birch, Ward,

Spectral Cluster

PCA, IC, word

embedding...

?
? ?

?

?

?

?

?
?

?

?

- Others: reinforcement learning, semi-supervised learning, online learning,. . .
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Supervised learning
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Goal

Mostly, the same as the unsupervised case:

The goal as usual, is to make sense of the data.

For this we define a model

M(θ)

that have some parameter θ, and we try to get the model fit to the data by

minimizing a loss.

Which model? Which loss?
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Classification

Let:

- X be an D-dimensional random variable,

- and Y binary (0/1) random variable.

X and Y are linked by some unknown joint distribution.

A predictor can be thought as a parametrized model M(θ) of the conditional

distribution Y |X .

The loss is usually chosen as the negative log-likelihood of the data:

−
∑
i

log pθ(Y = yi |X = xi )

M(θ) = P(Y = 1|X , θ)

P(Y = 1|X , θ) + P(Y = 0|X , θ) = 1
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Logistic regression – Example

Hours (xi ) 0.50 0.75 1.25 1.75 2.00 2.5 3.75 4.00 5.00 5.50

Pass (yi ) 0 0 0 1 0 1 0 1 1 1

[Source: Wikipedia]
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Logistic regression – Example

The probability to pass the exam can be modeled by

p(Y = 1|x) =
1

1 + e−(w·x+b)
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Logistic regression

So we write

p(Y = 1|x) = σ(w · x + b)

where the function σ is the logistic sigmoid σ : x 7→ 1
1+e−x

−10 −5 5 10

0.5

1

x

y

Sigmoid function

Exercice

Let f be the predictor fw,b(x) = p(Y = 1|x) = σ(w · x +b). Consider the case

where x ∈ RD and interpret geometrically the role of parameters w and b.
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Conditional likelihood

To measure the goodness of a fit we use the likelihood function, given by the

probability that the set is produced by a logistic function:

L = P(y1, ..., yN |x1, ...xN ,w , b) =
N∏
i=1

P(yi |xi ,w , b)

=
∏
i :yi=1

pi
∏
i :yi=0

(1− pi )

We want to find θ = (w , b) such that M(θ) = p maximizes L for the observed

data.
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Conditional likelihood

Exercise

1. Let f (x) = p(Y = 1|x) = σ(w · x + b). Show that the conditional

log-likelihood LL = logP(y1, ..., yN |x1, ..., xN ,w , b) can be written as:

LL(w , b) = −
N∑
i=1

[yi . log f (xi ) + (1− yi ) log(1− f (xi ))]

The name of the loss L(w , b; x) = −LL(w , b) is called the logistic loss, or

binary cross-entropy.

2. Show that if X |Y = i ∼ N (µi ,Σ), then p(Y = 1|x) can be written as

σ(w · x + b). Determine w and b.

Hint: start by writing p(Y = 1|x) using the Bayes rule.
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Logistic regression algorithmics

The conditional negative log likelihood of the logistic regression is convex,

having a unique minimum.

Can be optimized with gradient descent (first order)

Even speed up by a Newton-Raphson scheme (second order as we can compute

the Hessian) → leads to an algorithm [Rubin, 83] called Iterative Reweighted

Least Squares.
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Issues with LR: linear separability

Other linear methods exist:

- Perceptron (lectures about neural networks)

- Fisher’s Linear Discriminant

Most of the time, points are not linearly separable (thus, cannot be learnt with

logistic regression):
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Toward kernel methods

One trick consists into transforming the points into a higher dimensional space

where points are linearly separable:

The idea is to replace the terms xi by a transformed version Φ(xi ) in a higher

dimensional space (feature map chosen so that hopefully the data is more

linearly separable), and learn a linear classifier there.
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Which feature map?

We don’t design the feature map by hand.

Feature maps are usually chosen in families of feature maps known for:

- easing linear separation

- their computational tractability (see kernel trick just after)

Indeed, Φ can project to a high (possibly infinity) dimensional space,

that make the parameters and the scalar product 〈w ,Φ(xi )〉
costly/impossible to compute.
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Which feature map?

Φ(x) = x2

[Images from https://towardsdatascience.com/the-kernel-trick-c98cdbcaeb3f]
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Which feature map?

Φ(x) = x mod 2

[Images from https://towardsdatascience.com/the-kernel-trick-c98cdbcaeb3f]
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Which feature map?

Φ(x) = Φ((x1, x2)) = (x2
1 ,
√

2x1x2, x
2
2 )

[Images from https://towardsdatascience.com/the-kernel-trick-c98cdbcaeb3f]
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Kernel trick

2 ingredients:

1.Reformulate the loss (dual formulation) so that it involves only a linear

combination of terms of the form 〈Φ(xi ),Φ(xj)〉 (no w , b anymore, but Φ

comes with it’s own parameters).

2. We can choose Φ so that 〈Φ(xi ),Φ(xj)〉 can be fast to compute.

Kernel trick

Instead of choosing a feature map, and computing the scalar product, we

choose a kernel that computes from 2 low dimensional vectors their scalar

product in high dimension without explicitly computing the feature map.

Formally, we have data xi, xj ∈ RD and a map Φ : RD → RE , then a kernel

function is

k(xi, xj) = 〈Φ(xi),Φ(xj)〉
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Kernel example

Kernel trick for a 2nd degree polynomial mapping:

k(xi , xj) = 〈Φ(a),Φ(b)〉 =

 a21,√
2a1a2

a22


T  b2

1 ,√
2b1b2

b2
2

 =

= a21b
2
1 + 2a1b1a2b2 + a22b

2
2 =

= (a1b1 + a2b2)2 =

[a1,
a2

]T [
b1,

b2

]2

=

= 〈a, b〉2 = 〈xi , xj〉2

Another common example is the Gaussian Kernel

k(xi , xj) = 〈Φ(xi ),Φ(xj)〉 = exp
(
− γ||xi − xj ||2

)

There are not established, general rules to know what kernel will work

best for your particular data.
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Solving kernel methods

The solution of the dual problem (formulation omitted for this unit)

w =
N∑
i=1

αiyixi

The decision boundary for a new point is

wTx + w0 =
N∑
i=1

αiyix
T
i x + w0

The decision:

y = sign

[
N∑
i=1

αiyix
T
i x + w0

]

Mapping to feature space we have the decision

y = sign

[
N∑
i=1

αiyi 〈Φ(x),Φ(xi)〉+ w0

]
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Toward SVM (support vector models)

So far we have:

- Supervised model for classification

- A way to train in the convex case (unique optimum + gradient-related

algorithm)

- Extension to deal with the case of non-linear separability

New issue:

Due to the kernel, the prediction of the class of a point x cannot be written

σ(〈w ,Φ(x)〉+ b)

but it involves the computation of

N∑
i=1

αiyik(x , xi )

where N is the size of the training set. . .

SVMs to the rescue

SVM solves this.
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SVM: Support vectors

To avoid the computation of N terms when predicting: the loss is such that the

model chooses few data points (called support vectors) that will play a role in

the loss, the other are discarded.

SVM

SVM finds a linear separation between classes such that it maximizes the

distance to the separation hyperplane (called the margin).

Instead of describing the hyperplane with a (potentially infinite) vector w , it

writes it as a linear combination of support vectors (picked in the data).

With a Support Vector set SV ⊂ X we have

y = sign

[∑
i∈SV

αiyi 〈Φ(x),Φ(xi)〉+ w0

]
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SVM visually

Identity feature map Φ(x) = x (linear kernel)
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SVM visually

Gaussian kernel: k(xi , xj) = e−γ||xi−xj ||2

The blue line is a plane in higher dimensional space, projected in 2D.
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Influence of noise

”Robust” separation
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Influence of noise

”Robust” separation With few noisy points
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Influence of noise

”Robust” separation With few noisy points Even more
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Soft margins

To solve the issue of robustness to points near the decision boundary, one can

introduce an hyper-parameter that controls the tolerance to misclassification

(during inference). Without entering into details, visually it amounts to:

Hard margin
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SVM summary

- Allows for kernels (linear, polynomial, Gaussian, etc.) → ideal for

non-linearly separable data

- Can be tuned for ”more robust inference” vs ”more precise inference of

boundary”

- Efficient when predicting: complexity proportional to number of support

vectors.
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Decision tree
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Decision tree

- Can be used for classification or regression

- Simple algorithm: recursively decide on a variable to split that minimizes

the expectation of a loss in the subsequent leaves (regression: variance,

classification: entropy of the outcome)
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Decision tree example

Classification into two classes using entropy loss:

E = −P(class 1) log(P(class 1))− P(class 2)(logP(class 2))

High entropy if ”data is mixed”.

Example

In a dataset with 20 elements, 14 are class 1 and 6 are class 2, the entropy

can be computed as:

E = −14

20
log(

14

20
)− 6

20
log(

6

20
) = 0.880
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Decision tree example

Information Gain (IG) is the decrease in entropy after the dataset is split:

IG = E − Esplit

Before split (5 blue, 5 green): E = −0.5 log(0.5)− 0.5 log(0.5) = 1.

After the split: Eleft = 0, Eright = − 1
6

log( 1
6
)− 5

6
log( 5

6
) = 0.65

Esplit = 0.4 · Eleft + 0.6 · Eright = 0.39

IG = 1− 0.39 = 0.61
31



Decision tree

- Can be used for classification or regression

- Simple algorithm: recursively decide on a variable to split that minimizes

the expectation of a loss in the subsequent leaves (regression: variance,

classification: entropy / Gini impurity)

Issue

Imagine that the splits are partitioning the data in a half at each step of the

inference algorithm. Can you foresee any issue?

Overfitting (leaves are specialized for very few data points).

Possible way out: random forests.
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Random forest

Simple idea:

- bootstrap the training set and learn a tree on each bootstrapped set

- for a prediction, run all decision tree and aggregate with a majority vote

For free, we get also uncertainty measure by looking at the variance of the

predictions in each decision tree.
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