
Introduction to Artificial Intelligence (ENSIMAG)

Intelligent Systems (MOSIG)

Some models for unsupervised and supervised learning

Original Slides by Clovis Galiez and Sergi Pujades

Lecture: Pierre Gaillard

2022-2023

Outline

- Unsupervised and supervised learning

- Unsupervised learning

– EM

– K-Means

– PCA

– t-SNE

- Supervised models

– General setting

– Logistic regression

– SVM

– Random forest

1

Supervised and unsupervised learning

Make sense of the data

2

Supervised vs unsupervised learning

Two main categories of machine learning algorithms:

- Supervised learning: predict output Y from some input data X . The training data has a

known label Y .

Examples:

– X is a picture, and Y is a cat or a dog

– X is a picture, and Y ∈ {0, . . . , 9} is a digit

– X is are videos captured by a robot playing table

tennis, and Y are the parameters of the robots to

return the ball correctly
?

?

?

- Unsupervised learning: training data is not labeled and does not have a known result

Examples:

– detect change points in a non-stationary time-series

– detect outliers

– clustering: group data in homogeneous groups

– principal component analysis: compress data without

loosing much information

– density estimation

– dictionary learning

?
? ?

?

?

?

?

?
?

?

?

- Others: reinforcement learning, semi-supervised learning, online learning,. . .

3

Supervised vs unsupervised learning

Two main categories of machine learning algorithms:

- Supervised learning: predict output Y from some input data X . The training data has a

known label Y .

Examples:

– X is a picture, and Y is a cat or a dog

– X is a picture, and Y ∈ {0, . . . , 9} is a digit

– X is are videos captured by a robot playing table

tennis, and Y are the parameters of the robots to

return the ball correctly
?

?

?1

5
12

7

12

32

17

21

- Unsupervised learning: training data is not labeled and does not have a known result

Examples:

– detect change points in a non-stationary time-series

– detect outliers

– clustering: group data in homogeneous groups

– principal component analysis: compress data without

loosing much information

– density estimation

– dictionary learning

?
? ?

?

?

?

?

?
?

?

?

- Others: reinforcement learning, semi-supervised learning, online learning,. . .

3

Supervised vs unsupervised learning

Two main categories of machine learning algorithms:

- Supervised learning: predict output Y from some input data X . The training data has a

known label Y .

Classification Regression

KNN, SVM, Neural Nets,

Logistic regression, Decision

Trees, Random Forest, . . .

Lasso, Ridge

Nearest Neighbors

Neural Networks,. . . ?
?

?1

5
12

7

12

32

17

21

- Unsupervised learning: training data is not labeled and does not have a known result

Clustering
Dimensionality

reduction

K-means, the Apriori al-

gorithm, Birch, Ward,

Spectral Cluster

PCA, IC, word

embedding...

?
? ?

?

?

?

?

?
?

?

?

- Others: reinforcement learning, semi-supervised learning, online learning,. . .

3

Supervised learning

4

Goal

Mostly, the same as the unsupervised case:

The goal as usual, is to make sense of the data.

For this we define a model

M(θ)

that have some parameter θ, and we try to get the model fit to the data by

minimizing a loss.

Which model? Which loss?

5

Goal

Mostly, the same as the unsupervised case:

The goal as usual, is to make sense of the data.

For this we define a model

M(θ)

that have some parameter θ, and we try to get the model fit to the data by

minimizing a loss.

Which model? Which loss?

5

Classification

Let:

- X be an D-dimensional random variable,

- and Y binary (0/1) random variable.

X and Y are linked by some unknown joint distribution.

A predictor can be thought as a parametrized model M(θ) of the conditional

distribution Y |X .

The loss is usually chosen as the negative log-likelihood of the data:

−
∑
i

log pθ(Y = yi |X = xi)

M(θ) = P(Y = 1|X , θ)

P(Y = 1|X , θ) + P(Y = 0|X , θ) = 1

6

Logistic regression – Example

Hours (xi) 0.50 0.75 1.25 1.75 2.00 2.5 3.75 4.00 5.00 5.50

Pass (yi) 0 0 0 1 0 1 0 1 1 1

[Source: Wikipedia]

7

Logistic regression – Example

Hours (xi) 0.50 0.75 1.25 1.75 2.00 2.5 3.75 4.00 5.00 5.50

Pass (yi) 0 0 0 1 0 1 0 1 1 1

[Source: Wikipedia] 7

Logistic regression – Example

The probability to pass the exam can be modeled by

p(Y = 1|x) =
1

1 + e−(w·x+b)

8

Logistic regression

So we write

p(Y = 1|x) = σ(w · x + b)

where the function σ is the logistic sigmoid σ : x 7→ 1
1+e−x

−10 −5 5 10

0.5

1

x

y

Sigmoid function

Exercice

Let f be the predictor fw,b(x) = p(Y = 1|x) = σ(w · x +b). Consider the case

where x ∈ RD and interpret geometrically the role of parameters w and b.

9

Conditional likelihood

To measure the goodness of a fit we use the likelihood function, given by the

probability that the set is produced by a logistic function:

L = P(y1, ..., yN |x1, ...xN ,w , b) =
N∏
i=1

P(yi |xi ,w , b)

=
∏
i :yi=1

pi
∏
i :yi=0

(1− pi)

We want to find θ = (w , b) such that M(θ) = p maximizes L for the observed

data.

10

Conditional likelihood

Exercise

1. Let f (x) = p(Y = 1|x) = σ(w · x + b). Show that the conditional

log-likelihood LL = logP(y1, ..., yN |x1, ..., xN ,w , b) can be written as:

LL(w , b) = −
N∑
i=1

[yi . log f (xi) + (1− yi) log(1− f (xi))]

The name of the loss L(w , b; x) = −LL(w , b) is called the logistic loss, or

binary cross-entropy.

2. Show that if X |Y = i ∼ N (µi ,Σ), then p(Y = 1|x) can be written as

σ(w · x + b). Determine w and b.

Hint: start by writing p(Y = 1|x) using the Bayes rule.

11

Logistic regression algorithmics

The conditional negative log likelihood of the logistic regression is convex,

having a unique minimum.

Can be optimized with gradient descent (first order)

Even speed up by a Newton-Raphson scheme (second order as we can compute

the Hessian) → leads to an algorithm [Rubin, 83] called Iterative Reweighted

Least Squares.

12

Issues with LR: linear separability

Other linear methods exist:

- Perceptron (lectures about neural networks)

- Fisher’s Linear Discriminant

Most of the time, points are not linearly separable (thus, cannot be learnt with

logistic regression):

13

Toward kernel methods

One trick consists into transforming the points into a higher dimensional space

where points are linearly separable:

The idea is to replace the terms xi by a transformed version Φ(xi) in a higher

dimensional space (feature map chosen so that hopefully the data is more

linearly separable), and learn a linear classifier there.

14

Toward kernel methods

One trick consists into transforming the points into a higher dimensional space

where points are linearly separable:

The idea is to replace the terms xi by a transformed version Φ(xi) in a higher

dimensional space (feature map chosen so that hopefully the data is more

linearly separable), and learn a linear classifier there.

14

Which feature map?

We don’t design the feature map by hand.

Feature maps are usually chosen in families of feature maps known for:

- easing linear separation

- their computational tractability (see kernel trick just after)

Indeed, Φ can project to a high (possibly infinity) dimensional space,

that make the parameters and the scalar product 〈w ,Φ(xi)〉
costly/impossible to compute.

15

Which feature map?

We don’t design the feature map by hand.

Feature maps are usually chosen in families of feature maps known for:

- easing linear separation

- their computational tractability (see kernel trick just after)

Indeed, Φ can project to a high (possibly infinity) dimensional space,

that make the parameters and the scalar product 〈w ,Φ(xi)〉
costly/impossible to compute.

15

Which feature map?

Φ(x) = x2

[Images from https://towardsdatascience.com/the-kernel-trick-c98cdbcaeb3f]

16

Which feature map?

Φ(x) = x mod 2

[Images from https://towardsdatascience.com/the-kernel-trick-c98cdbcaeb3f]

17

Which feature map?

Φ(x) = Φ((x1, x2)) = (x2
1 ,
√

2x1x2, x
2
2)

[Images from https://towardsdatascience.com/the-kernel-trick-c98cdbcaeb3f]

18

Kernel trick

2 ingredients:

1.Reformulate the loss (dual formulation) so that it involves only a linear

combination of terms of the form 〈Φ(xi),Φ(xj)〉 (no w , b anymore, but Φ

comes with it’s own parameters).

2. We can choose Φ so that 〈Φ(xi),Φ(xj)〉 can be fast to compute.

Kernel trick

Instead of choosing a feature map, and computing the scalar product, we

choose a kernel that computes from 2 low dimensional vectors their scalar

product in high dimension without explicitly computing the feature map.

Formally, we have data xi, xj ∈ RD and a map Φ : RD → RE , then a kernel

function is

k(xi, xj) = 〈Φ(xi),Φ(xj)〉

19

Kernel trick

2 ingredients:

1.Reformulate the loss (dual formulation) so that it involves only a linear

combination of terms of the form 〈Φ(xi),Φ(xj)〉 (no w , b anymore, but Φ

comes with it’s own parameters).

2. We can choose Φ so that 〈Φ(xi),Φ(xj)〉 can be fast to compute.

Kernel trick

Instead of choosing a feature map, and computing the scalar product, we

choose a kernel that computes from 2 low dimensional vectors their scalar

product in high dimension without explicitly computing the feature map.

Formally, we have data xi, xj ∈ RD and a map Φ : RD → RE , then a kernel

function is

k(xi, xj) = 〈Φ(xi),Φ(xj)〉

19

Kernel trick

2 ingredients:

1.Reformulate the loss (dual formulation) so that it involves only a linear

combination of terms of the form 〈Φ(xi),Φ(xj)〉 (no w , b anymore, but Φ

comes with it’s own parameters).

2. We can choose Φ so that 〈Φ(xi),Φ(xj)〉 can be fast to compute.

Kernel trick

Instead of choosing a feature map, and computing the scalar product, we

choose a kernel that computes from 2 low dimensional vectors their scalar

product in high dimension without explicitly computing the feature map.

Formally, we have data xi, xj ∈ RD and a map Φ : RD → RE , then a kernel

function is

k(xi, xj) = 〈Φ(xi),Φ(xj)〉

19

Kernel trick

2 ingredients:

1.Reformulate the loss (dual formulation) so that it involves only a linear

combination of terms of the form 〈Φ(xi),Φ(xj)〉 (no w , b anymore, but Φ

comes with it’s own parameters).

2. We can choose Φ so that 〈Φ(xi),Φ(xj)〉 can be fast to compute.

Kernel trick

Instead of choosing a feature map, and computing the scalar product, we

choose a kernel that computes from 2 low dimensional vectors their scalar

product in high dimension without explicitly computing the feature map.

Formally, we have data xi, xj ∈ RD and a map Φ : RD → RE , then a kernel

function is

k(xi, xj) = 〈Φ(xi),Φ(xj)〉

19

Kernel example

Kernel trick for a 2nd degree polynomial mapping:

k(xi , xj) = 〈Φ(a),Φ(b)〉 =

 a21,√
2a1a2

a22

T b2

1 ,√
2b1b2

b2
2

 =

= a21b
2
1 + 2a1b1a2b2 + a22b

2
2 =

= (a1b1 + a2b2)2 =

[a1,
a2

]T [
b1,

b2

]2

=

= 〈a, b〉2 = 〈xi , xj〉2

Another common example is the Gaussian Kernel

k(xi , xj) = 〈Φ(xi),Φ(xj)〉 = exp
(
− γ||xi − xj ||2

)

There are not established, general rules to know what kernel will work

best for your particular data.

20

Kernel example

Kernel trick for a 2nd degree polynomial mapping:

k(xi , xj) = 〈Φ(a),Φ(b)〉 =

 a21,√
2a1a2

a22

T b2

1 ,√
2b1b2

b2
2

 =

= a21b
2
1 + 2a1b1a2b2 + a22b

2
2 =

= (a1b1 + a2b2)2 =

[a1,
a2

]T [
b1,

b2

]2

=

= 〈a, b〉2 = 〈xi , xj〉2

Another common example is the Gaussian Kernel

k(xi , xj) = 〈Φ(xi),Φ(xj)〉 = exp
(
− γ||xi − xj ||2

)
There are not established, general rules to know what kernel will work

best for your particular data.

20

Solving kernel methods

The solution of the dual problem (formulation omitted for this unit)

w =
N∑
i=1

αiyixi

The decision boundary for a new point is

wTx + w0 =
N∑
i=1

αiyix
T
i x + w0

The decision:

y = sign

[
N∑
i=1

αiyix
T
i x + w0

]

Mapping to feature space we have the decision

y = sign

[
N∑
i=1

αiyi 〈Φ(x),Φ(xi)〉+ w0

]

21

Toward SVM (support vector models)

So far we have:

- Supervised model for classification

- A way to train in the convex case (unique optimum + gradient-related

algorithm)

- Extension to deal with the case of non-linear separability

New issue:

Due to the kernel, the prediction of the class of a point x cannot be written

σ(〈w ,Φ(x)〉+ b)

but it involves the computation of

N∑
i=1

αiyik(x , xi)

where N is the size of the training set. . .

SVMs to the rescue

SVM solves this.

22

Toward SVM (support vector models)

So far we have:

- Supervised model for classification

- A way to train in the convex case (unique optimum + gradient-related

algorithm)

- Extension to deal with the case of non-linear separability

New issue:

Due to the kernel, the prediction of the class of a point x cannot be written

σ(〈w ,Φ(x)〉+ b)

but it involves the computation of

N∑
i=1

αiyik(x , xi)

where N is the size of the training set. . .

SVMs to the rescue

SVM solves this.

22

Toward SVM (support vector models)

So far we have:

- Supervised model for classification

- A way to train in the convex case (unique optimum + gradient-related

algorithm)

- Extension to deal with the case of non-linear separability

New issue:

Due to the kernel, the prediction of the class of a point x cannot be written

σ(〈w ,Φ(x)〉+ b)

but it involves the computation of

N∑
i=1

αiyik(x , xi)

where N is the size of the training set. . .

SVMs to the rescue

SVM solves this.

22

SVM: Support vectors

To avoid the computation of N terms when predicting: the loss is such that the

model chooses few data points (called support vectors) that will play a role in

the loss, the other are discarded.

SVM

SVM finds a linear separation between classes such that it maximizes the

distance to the separation hyperplane (called the margin).

Instead of describing the hyperplane with a (potentially infinite) vector w , it

writes it as a linear combination of support vectors (picked in the data).

With a Support Vector set SV ⊂ X we have

y = sign

[∑
i∈SV

αiyi 〈Φ(x),Φ(xi)〉+ w0

]

23

SVM: Support vectors

To avoid the computation of N terms when predicting: the loss is such that the

model chooses few data points (called support vectors) that will play a role in

the loss, the other are discarded.

SVM

SVM finds a linear separation between classes such that it maximizes the

distance to the separation hyperplane (called the margin).

Instead of describing the hyperplane with a (potentially infinite) vector w , it

writes it as a linear combination of support vectors (picked in the data).

With a Support Vector set SV ⊂ X we have

y = sign

[∑
i∈SV

αiyi 〈Φ(x),Φ(xi)〉+ w0

]

23

SVM visually

Identity feature map Φ(x) = x (linear kernel)

24

SVM visually

Gaussian kernel: k(xi , xj) = e−γ||xi−xj ||2

The blue line is a plane in higher dimensional space, projected in 2D.

24

Influence of noise

”Robust” separation

25

Influence of noise

”Robust” separation With few noisy points

25

Influence of noise

”Robust” separation With few noisy points Even more

25

Soft margins

To solve the issue of robustness to points near the decision boundary, one can

introduce an hyper-parameter that controls the tolerance to misclassification

(during inference). Without entering into details, visually it amounts to:

Hard margin

26

Soft margins

To solve the issue of robustness to points near the decision boundary, one can

introduce an hyper-parameter that controls the tolerance to misclassification

(during inference). Without entering into details, visually it amounts to:

Hard margin Soft margins

26

SVM summary

- Allows for kernels (linear, polynomial, Gaussian, etc.) → ideal for

non-linearly separable data

- Can be tuned for ”more robust inference” vs ”more precise inference of

boundary”

- Efficient when predicting: complexity proportional to number of support

vectors.

27

Decision tree

28

Decision tree

- Can be used for classification or regression

- Simple algorithm: recursively decide on a variable to split that minimizes

the expectation of a loss in the subsequent leaves (regression: variance,

classification: entropy of the outcome)

29

Decision tree example

Classification into two classes using entropy loss:

E = −P(class 1) log(P(class 1))− P(class 2)(logP(class 2))

High entropy if ”data is mixed”.

Example

In a dataset with 20 elements, 14 are class 1 and 6 are class 2, the entropy

can be computed as:

E = −14

20
log(

14

20
)− 6

20
log(

6

20
) = 0.880

30

Decision tree example

Information Gain (IG) is the decrease in entropy after the dataset is split:

IG = E − Esplit

Before split (5 blue, 5 green): E = −0.5 log(0.5)− 0.5 log(0.5) = 1.

After the split: Eleft = 0, Eright = − 1
6

log(1
6
)− 5

6
log(5

6
) = 0.65

Esplit = 0.4 · Eleft + 0.6 · Eright = 0.39

IG = 1− 0.39 = 0.61
31

Decision tree

- Can be used for classification or regression

- Simple algorithm: recursively decide on a variable to split that minimizes

the expectation of a loss in the subsequent leaves (regression: variance,

classification: entropy / Gini impurity)

Issue

Imagine that the splits are partitioning the data in a half at each step of the

inference algorithm. Can you foresee any issue?

Overfitting (leaves are specialized for very few data points).

Possible way out: random forests.

32

Decision tree

- Can be used for classification or regression

- Simple algorithm: recursively decide on a variable to split that minimizes

the expectation of a loss in the subsequent leaves (regression: variance,

classification: entropy / Gini impurity)

Issue

Imagine that the splits are partitioning the data in a half at each step of the

inference algorithm. Can you foresee any issue?

Overfitting (leaves are specialized for very few data points).

Possible way out: random forests.

32

Decision tree

- Can be used for classification or regression

- Simple algorithm: recursively decide on a variable to split that minimizes

the expectation of a loss in the subsequent leaves (regression: variance,

classification: entropy / Gini impurity)

Issue

Imagine that the splits are partitioning the data in a half at each step of the

inference algorithm. Can you foresee any issue?

Overfitting (leaves are specialized for very few data points).

Possible way out: random forests.

32

Random forest

Simple idea:

- bootstrap the training set and learn a tree on each bootstrapped set

- for a prediction, run all decision tree and aggregate with a majority vote

For free, we get also uncertainty measure by looking at the variance of the

predictions in each decision tree.

33

