# Introduction to Artificial Intelligence (ENSIMAG) Intelligent Systems (MOSIG) 

Some models for unsupervised and supervised learning

Original Slides by Clovis Galiez and Sergi Pujades
Lecture: Pierre Gaillard
2022-2023

## Outline

- Unsupervised and supervised learning
- Unsupervised learning
- EM
- K-Means
- PCA
- t-SNE
- Supervised models
- General setting
- Logistic regression
- SVM
- Random forest


# Supervised and unsupervised learning 

Make sense of the data

## Supervised vs unsupervised learning

Two main categories of machine learning algorithms:

- Supervised learning: predict output $Y$ from some input data $X$. The training data has a known label $Y$.


## Examples:

- $X$ is a picture, and $Y$ is a cat or a dog
- $X$ is a picture, and $Y \in\{0, \ldots, 9\}$ is a digit
- $X$ is are videos captured by a robot playing table tennis, and $Y$ are the parameters of the robots to return the ball correctly

- Unsupervised learning: training data is not labeled and does not have a known result

Examples:

- detect change points in a non-stationary time-series
- detect outliers
- clustering: group data in homogeneous groups
- principal component analysis: compress data without loosing much information

- density estimation
- dictionary learning
- Others: reinforcement learning, semi-supervised learning, online learning,...


## Supervised vs unsupervised learning

Two main categories of machine learning algorithms:

- Supervised learning: predict output $Y$ from some input data $X$. The training data has a known label $Y$.


## Examples:

- $X$ is a picture, and $Y$ is a cat or a dog
- $X$ is a picture, and $Y \in\{0, \ldots, 9\}$ is a digit
- $X$ is are videos captured by a robot playing table tennis, and $Y$ are the parameters of the robots to return the ball correctly

- Unsupervised learning: training data is not labeled and does not have a known result

Examples:

- detect change points in a non-stationary time-series
- detect outliers
- clustering: group data in homogeneous groups
- principal component analysis: compress data without loosing much information

- density estimation
- dictionary learning
- Others: reinforcement learning, semi-supervised learning, online learning,...


## Supervised vs unsupervised learning

Two main categories of machine learning algorithms:

- Supervised learning: predict output $Y$ from some input data $X$. The training data has a known label $Y$.

| Classification | Regression |
| :--- | :--- |
| KNN, SVM, Neural Nets, | Lasso, Ridge |
| Logistic regression, Decision | Nearest Neighbors |
| Trees, Random Forest, ... | Neural Networks,... |

(1)
(5)


- Unsupervised learning: training data is not labeled and does not have a known result

| Clustering | Dimensionality <br> reduction |
| :---: | :--- |
| K-means, the Apriori al- <br> gorithm, Birch, Ward, <br> Spectral Cluster | PCA, IC, word <br> embedding... |



- Others: reinforcement learning, semi-supervised learning, online learning,...


## Supervised learning

## Goal

Mostly, the same as the unsupervised case:

The goal as usual, is to make sense of the data.
For this we define a model

$$
\mathcal{M}(\theta)
$$

that have some parameter $\theta$, and we try to get the model fit to the data by minimizing a loss.

## Goal

Mostly, the same as the unsupervised case:

The goal as usual, is to make sense of the data.
For this we define a model

$$
\mathcal{M}(\theta)
$$

that have some parameter $\theta$, and we try to get the model fit to the data by minimizing a loss.

Which model? Which loss?

## Classification

Let:

- $X$ be an $D$-dimensional random variable,
- and $Y$ binary ( $0 / 1$ ) random variable.
$X$ and $Y$ are linked by some unknown joint distribution.

A predictor can be thought as a parametrized model $\mathcal{M}(\theta)$ of the conditional distribution $Y \mid X$.
The loss is usually chosen as the negative log-likelihood of the data:

$$
-\sum_{i} \log p_{\theta}\left(Y=y_{i} \mid X=x_{i}\right)
$$

$$
\begin{gathered}
\mathcal{M}(\theta)=P(Y=1 \mid X, \theta) \\
P(Y=1 \mid X, \theta)+P(Y=0 \mid X, \theta)=1
\end{gathered}
$$

## Logistic regression - Example

| Hours $\left(x_{i}\right)$ | 0.50 | 0.75 | 1.25 | 1.75 | 2.00 | 2.5 | 3.75 | 4.00 | 5.00 | 5.50 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pass $\left(y_{i}\right)$ | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 |

## Logistic regression - Example

| Hours $\left(x_{i}\right)$ | 0.50 | 0.75 | 1.25 | 1.75 | 2.00 | 2.5 | 3.75 | 4.00 | 5.00 | 5.50 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pass $\left(y_{i}\right)$ | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 |


[Source: Wikipedia]

## Logistic regression - Example



The probability to pass the exam can be modeled by

$$
p(Y=1 \mid x)=\frac{1}{1+e^{-(\omega \cdot x+b)}}
$$

## Logistic regression

So we write

$$
p(Y=1 \mid x)=\sigma(w \cdot x+b)
$$

where the function $\sigma$ is the logistic sigmoid $\sigma: x \mapsto \frac{1}{1+e^{-x}}$


Sigmoid function

## Exercice

Let $f$ be the predictor $f_{w, b}(x)=p(Y=1 \mid x)=\sigma(w \cdot x+b)$. Consider the case where $x \in \mathbb{R}^{\mathbb{D}}$ and interpret geometrically the role of parameters $w$ and $b$.

## Conditional likelihood

To measure the goodness of a fit we use the likelihood function, given by the probability that the set is produced by a logistic function:

$$
\begin{aligned}
L=P\left(y_{1}, \ldots, y_{N} \mid x_{1}, \ldots x_{N}, w, b\right) & =\prod_{i=1}^{N} P\left(y_{i} \mid x_{i}, w, b\right) \\
& =\prod_{i: y_{i}=1} p_{i} \prod_{i: y_{i}=0}\left(1-p_{i}\right)
\end{aligned}
$$

We want to find $\theta=(w, b)$ such that $\mathcal{M}(\theta)=p$ maximizes $L$ for the observed data.

## Conditional likelihood

## Exercise

1. Let $f(x)=p(Y=1 \mid x)=\sigma(w \cdot x+b)$. Show that the conditional log-likelihood $L L=\log P\left(y_{1}, \ldots, y_{N} \mid x_{1}, \ldots, x_{N}, w, b\right)$ can be written as:

$$
L L(w, b)=-\sum_{i=1}^{N}\left[y_{i} \cdot \log f\left(x_{i}\right)+\left(1-y_{i}\right) \log \left(1-f\left(x_{i}\right)\right)\right]
$$

The name of the loss $\mathcal{L}(w, b ; x)=-L L(w, b)$ is called the logistic loss, or binary cross-entropy.
2. Show that if $X \mid Y=i \sim \mathcal{N}\left(\mu_{i}, \Sigma\right)$, then $p(Y=1 \mid x)$ can be written as $\sigma(w \cdot x+b)$. Determine $w$ and $b$.
Hint: start by writing $p(Y=1 \mid x)$ using the Bayes rule.

## Logistic regression algorithmics

The conditional negative log likelihood of the logistic regression is convex, having a unique minimum.


Can be optimized with gradient descent (first order)
Even speed up by a Newton-Raphson scheme (second order as we can compute the Hessian) $\rightarrow$ leads to an algorithm [Rubin, 83] called Iterative Reweighted Least Squares.

## Issues with LR: linear separability

Other linear methods exist:

- Perceptron (lectures about neural networks)
- Fisher's Linear Discriminant

Most of the time, points are not linearly separable (thus, cannot be learnt with logistic regression):


## Toward kernel methods

One trick consists into transforming the points into a higher dimensional space where points are linearly separable:

## Toward kernel methods

One trick consists into transforming the points into a higher dimensional space where points are linearly separable:


The idea is to replace the terms $x_{i}$ by a transformed version $\Phi\left(x_{i}\right)$ in a higher dimensional space (feature map chosen so that hopefully the data is more linearly separable), and learn a linear classifier there.

## Which feature map?

We don't design the feature map by hand.
Feature maps are usually chosen in families of feature maps known for:

- easing linear separation
- their computational tractability (see kernel trick just after)


## Which feature map?

We don't design the feature map by hand.
Feature maps are usually chosen in families of feature maps known for:

- easing linear separation
- their computational tractability (see kernel trick just after)

Indeed, $\Phi$ can project to a high (possibly infinity) dimensional space, that make the parameters and the scalar product $\left\langle w, \Phi\left(x_{i}\right)\right\rangle$ costly/impossible to compute.

## Which feature map?




$$
\Phi(x)=x^{2}
$$

[Images from https://towardsdatascience.com/the-kernel-trick-c98cdbcaeb3f]

## Which feature map?


[Images from https://towardsdatascience.com/the-kernel-trick-c98cdbcaeb3f]

## Which feature map?




$$
\Phi(x)=\Phi\left(\left(x_{1}, x_{2}\right)\right)=\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right)
$$

[Images from https://towardsdatascience.com/the-kernel-trick-c98cdbcaeb3f]

## Kernel trick

2 ingredients:

## Kernel trick

2 ingredients:
1.Reformulate the loss (dual formulation) so that it involves only a linear combination of terms of the form $\left\langle\Phi\left(x_{i}\right), \Phi\left(x_{j}\right)\right\rangle$ (no w, banymore, but $\Phi$ comes with it's own parameters).

## Kernel trick

2 ingredients:
1.Reformulate the loss (dual formulation) so that it involves only a linear combination of terms of the form $\left\langle\Phi\left(x_{i}\right), \Phi\left(x_{j}\right)\right\rangle$ (no w, banymore, but $\Phi$ comes with it's own parameters).
2. We can choose $\Phi$ so that $\left\langle\Phi\left(x_{i}\right), \Phi\left(x_{j}\right)\right\rangle$ can be fast to compute.

## Kernel trick

2 ingredients:
1.Reformulate the loss (dual formulation) so that it involves only a linear combination of terms of the form $\left\langle\Phi\left(x_{i}\right), \Phi\left(x_{j}\right)\right\rangle$ (no $w, b$ anymore, but $\Phi$ comes with it's own parameters).
2. We can choose $\Phi$ so that $\left\langle\Phi\left(x_{i}\right), \Phi\left(x_{j}\right)\right\rangle$ can be fast to compute.

## Kernel trick

Instead of choosing a feature map, and computing the scalar product, we choose a kernel that computes from 2 low dimensional vectors their scalar product in high dimension without explicitly computing the feature map.

Formally, we have data $\mathbf{x}_{\mathbf{i}}, \mathbf{x}_{\mathbf{j}} \in \mathbb{R}^{D}$ and a map $\Phi: \mathbb{R}^{D} \rightarrow \mathbb{R}^{E}$, then a kernel function is

$$
k\left(\mathbf{x}_{\mathbf{i}}, \mathbf{x}_{\mathbf{j}}\right)=\left\langle\Phi\left(\mathbf{x}_{\mathbf{i}}\right), \Phi\left(\mathbf{x}_{\mathbf{j}}\right)\right\rangle
$$

## Kernel example

Kernel trick for a 2nd degree polynomial mapping:

$$
\begin{aligned}
k\left(x_{i}, x_{j}\right)=\langle\Phi(a), \Phi(b)\rangle & =\left[\begin{array}{c}
a_{1}^{2}, \\
\sqrt{2} a_{1} a_{2} \\
a_{2}^{2}
\end{array}\right]^{T}\left[\begin{array}{c}
b_{1}^{2}, \\
\sqrt{2} b_{1} b_{2} \\
b_{2}^{2}
\end{array}\right]= \\
& =a_{1}^{2} b_{1}^{2}+2 a_{1} b_{1} a_{2} b_{2}+a_{2}^{2} b_{2}^{2}= \\
& =\left(a_{1} b_{1}+a_{2} b_{2}\right)^{2}=\left(\left[\begin{array}{l}
a_{1}, \\
a_{2}
\end{array}\right]^{T}\left[\begin{array}{c}
b_{1}, \\
b_{2}
\end{array}\right]\right)^{2}= \\
& =\langle a, b\rangle^{2}=\left\langle x_{i}, x_{j}\right\rangle^{2}
\end{aligned}
$$

Another common example is the Gaussian Kernel

$$
k\left(x_{i}, x_{j}\right)=\left\langle\Phi\left(x_{i}\right), \Phi\left(x_{j}\right)\right\rangle=\exp \left(-\gamma\left\|x_{i}-x_{j}\right\|^{2}\right)
$$

## Kernel example

Kernel trick for a 2nd degree polynomial mapping:

$$
\begin{aligned}
k\left(x_{i}, x_{j}\right)=\langle\Phi(a), \Phi(b)\rangle & =\left[\begin{array}{c}
a_{1}^{2}, \\
\sqrt{2} a_{1} a_{2} \\
a_{2}^{2}
\end{array}\right]^{T}\left[\begin{array}{c}
b_{1}^{2}, \\
\sqrt{2} b_{1} b_{2} \\
b_{2}^{2}
\end{array}\right]= \\
& =a_{1}^{2} b_{1}^{2}+2 a_{1} b_{1} a_{2} b_{2}+a_{2}^{2} b_{2}^{2}= \\
& =\left(a_{1} b_{1}+a_{2} b_{2}\right)^{2}=\left(\left[\begin{array}{l}
a_{1}, \\
a_{2}
\end{array}\right]^{T}\left[\begin{array}{r}
b_{1}, \\
b_{2}
\end{array}\right]\right)^{2}= \\
& =\langle a, b\rangle^{2}=\left\langle x_{i}, x_{j}\right\rangle^{2}
\end{aligned}
$$

Another common example is the Gaussian Kernel

$$
k\left(x_{i}, x_{j}\right)=\left\langle\Phi\left(x_{i}\right), \Phi\left(x_{j}\right)\right\rangle=\exp \left(-\gamma\left\|x_{i}-x_{j}\right\|^{2}\right)
$$

There are not established, general rules to know what kernel will work best for your particular data.

## Solving kernel methods

The solution of the dual problem (formulation omitted for this unit)

$$
\mathbf{w}=\sum_{i=1}^{N} \alpha_{i} y_{i} \mathbf{x}_{\mathbf{i}}
$$

The decision boundary for a new point is

$$
\mathbf{w}^{T} \mathbf{x}+w_{0}=\sum_{i=1}^{N} \alpha_{i} y_{i} \mathbf{x}_{\mathbf{i}}^{\top} \mathbf{x}+w_{0}
$$

The decision:

$$
y=\operatorname{sign}\left[\sum_{i=1}^{N} \alpha_{i} y_{i} \mathbf{x}_{\mathrm{i}}^{\top} \mathrm{x}+w_{0}\right]
$$

Mapping to feature space we have the decision

$$
y=\operatorname{sign}\left[\sum_{i=1}^{N} \alpha_{i} y_{i}\left\langle\Phi(\mathrm{x}), \Phi\left(\mathrm{x}_{\mathrm{i}}\right)\right\rangle+w_{0}\right]
$$

## Toward SVM (support vector models)

So far we have:

- Supervised model for classification
- A way to train in the convex case (unique optimum + gradient-related algorithm)
- Extension to deal with the case of non-linear separability


## Toward SVM (support vector models)

So far we have:

- Supervised model for classification
- A way to train in the convex case (unique optimum + gradient-related algorithm)
- Extension to deal with the case of non-linear separability

New issue:

## Toward SVM (support vector models)

So far we have:

- Supervised model for classification
- A way to train in the convex case (unique optimum + gradient-related algorithm)
- Extension to deal with the case of non-linear separability

New issue:
Due to the kernel, the prediction of the class of a point $x$ cannot be written

$$
\sigma(\langle w, \Phi(x)\rangle+b)
$$

but it involves the computation of

$$
\sum_{i=1}^{N} \alpha_{i} y_{i} k\left(x, x_{i}\right)
$$

where $N$ is the size of the training set. . .

## SVMs to the rescue

SVM solves this.

## SVM: Support vectors

To avoid the computation of $N$ terms when predicting: the loss is such that the model chooses few data points (called support vectors) that will play a role in the loss, the other are discarded.

## SVM

SVM finds a linear separation between classes such that it maximizes the distance to the separation hyperplane (called the margin).

Instead of describing the hyperplane with a (potentially infinite) vector $w$, it writes it as a linear combination of support vectors (picked in the data).

## SVM: Support vectors

To avoid the computation of $N$ terms when predicting: the loss is such that the model chooses few data points (called support vectors) that will play a role in the loss, the other are discarded.

## SVM

SVM finds a linear separation between classes such that it maximizes the distance to the separation hyperplane (called the margin).

Instead of describing the hyperplane with a (potentially infinite) vector $w$, it writes it as a linear combination of support vectors (picked in the data).

With a Support Vector set SV $\subset \mathbf{X}$ we have

$$
y=\operatorname{sign}\left[\sum_{i \in \mathbf{S v}} \alpha_{i} y_{i}\left\langle\Phi(\mathbf{x}), \Phi\left(\mathbf{x}_{\mathbf{i}}\right)\right\rangle+w_{0}\right]
$$

## SVM visually



## SVM visually



The blue line is a plane in higher dimensional space, projected in 2D.

## Influence of noise

"Robust" separation

|  |  |
| :---: | :---: |

## Influence of noise



## Influence of noise

"Robust" separation


With few noisy points


Even more


## Soft margins

To solve the issue of robustness to points near the decision boundary, one can introduce an hyper-parameter that controls the tolerance to misclassification (during inference). Without entering into details, visually it amounts to:


Hard margin

## Soft margins

To solve the issue of robustness to points near the decision boundary, one can introduce an hyper-parameter that controls the tolerance to misclassification (during inference). Without entering into details, visually it amounts to:


Hard margin


Soft margins

## SVM summary

- Allows for kernels (linear, polynomial, Gaussian, etc.) $\rightarrow$ ideal for non-linearly separable data
- Can be tuned for "more robust inference" vs "more precise inference of boundary"
- Efficient when predicting: complexity proportional to number of support vectors.


## Decision tree



## Decision tree

- Can be used for classification or regression
- Simple algorithm: recursively decide on a variable to split that minimizes the expectation of a loss in the subsequent leaves (regression: variance, classification: entropy of the outcome)


## Decision tree example

Classification into two classes using entropy loss:

$$
E=-P(\text { class } 1) \log (P(\text { class } 1))-P(\text { class } 2)(\log P(\text { class } 2))
$$



High entropy if "data is mixed".

## Example

In a dataset with 20 elements, 14 are class 1 and 6 are class 2, the entropy can be computed as:

$$
E=-\frac{14}{20} \log \left(\frac{14}{20}\right)-\frac{6}{20} \log \left(\frac{6}{20}\right)=0.880
$$

## Decision tree example

Information Gain (IG) is the decrease in entropy after the dataset is split:

$$
I G=E-E_{\text {split }}
$$




Before split (5 blue, 5 green): $E=-0.5 \log (0.5)-0.5 \log (0.5)=1$.
After the split: $E_{\text {left }}=0, E_{\text {right }}=-\frac{1}{6} \log \left(\frac{1}{6}\right)-\frac{5}{6} \log \left(\frac{5}{6}\right)=0.65$

$$
E_{\text {split }}=0.4 \cdot E_{l e f t}+0.6 \cdot E_{\text {right }}=0.39
$$

$$
I G=1-0.39=0.61
$$

## Decision tree

- Can be used for classification or regression
- Simple algorithm: recursively decide on a variable to split that minimizes the expectation of a loss in the subsequent leaves (regression: variance, classification: entropy / Gini impurity)


## Issue

Imagine that the splits are partitioning the data in a half at each step of the inference algorithm. Can you foresee any issue?

## Decision tree

- Can be used for classification or regression
- Simple algorithm: recursively decide on a variable to split that minimizes the expectation of a loss in the subsequent leaves (regression: variance, classification: entropy / Gini impurity)


## Issue

Imagine that the splits are partitioning the data in a half at each step of the inference algorithm. Can you foresee any issue?

Overfitting (leaves are specialized for very few data points).

## Decision tree

- Can be used for classification or regression
- Simple algorithm: recursively decide on a variable to split that minimizes the expectation of a loss in the subsequent leaves (regression: variance, classification: entropy / Gini impurity)


## Issue

Imagine that the splits are partitioning the data in a half at each step of the inference algorithm. Can you foresee any issue?

Overfitting (leaves are specialized for very few data points).

Possible way out: random forests.

## Random forest

Simple idea:

- bootstrap the training set and learn a tree on each bootstrapped set
- for a prediction, run all decision tree and aggregate with a majority vote


## Random Forest Simplified



For free, we get also uncertainty measure by looking at the variance of the predictions in each decision tree.

